得到
  • 汉语词
  • 汉语典q
当前位置 :

玉溪2025-2026学年第一学期期末教学质量检测试题(卷)高三数学

考试时间: 90分钟 满分: 150
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共15题,共 75分)
  • 1、下列集合与集合相等的是(       

    A.

    B.

    C.

    D.

  • 2、已知椭圆的中心为,一个焦点为上,若是正三角形,则的离心率为(       

    A.

    B.

    C.

    D.

  • 3、将函数的图象向右平移个单位,得到的函数图象的一条对称轴的方程为 ( )

    A.

    B.

    C.

    D.

  • 4、有一个装有水且底面直径为12cm的圆柱形容器,水面与容器口的距离为cm.现往容器中放入一个半径为r(单位:cm)的小球,该小球放入水中后直接沉入容器底部,若使该容器内的水不溢出,则小球半径r的最大值为(       

    A.1

    B.2

    C.3

    D.4

  • 5、过点的直线与双曲线有且仅有一个公共点,这样的直线的条数是(       

    A.1

    B.2

    C.3

    D.4

  • 6、已知函数,则上不具有单调性的一个充分不必要条件是(  

    A.

    B.

    C.

    D.

  • 7、给出下列命题:

    ①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;

    ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;

    ③棱台的上、下底面可以不相似,但侧棱长一定相等.

    其中正确命题的个数是(       

    A.

    B.

    C.

    D.

  • 8、已知是长方体,EBC的中点,则异面直线所成角的正切值为(       

    A.2

    B.

    C.

    D.

  • 9、与圆相切且在轴上截距相等的直线共有(       

    A.1条

    B.2条

    C.3条

    D.4条

  • 10、在棱长为2的正四面体中,点满足,点满足,当最短时,       

    A.

    B.

    C.

    D.

  • 11、给出下列命题:

    ,不等式恒成立;

    ②若,则

    ,则的逆否命题;

    ④若命题,命题,则命题是真命题.

    其中,真命题为(  

    A.①③④ B.①② C.①②③ D.②③④

  • 12、“中国剩余定理”又称“孙子定理”,1852年英国来华传教伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理讲的是一个关于整除的问题,现有这样一个整除问题:将正整数中能被3除余1且被7除余4的数按由小到大的顺序排成一列,构成数列,则       

    A.103

    B.107

    C.109

    D.105

  • 13、过点和点的直线与过点和点的直线的位置关系是

    A.平行

    B.重合

    C.平行或重合

    D.相交或重合

  • 14、已知椭圆的两个焦点分别为,上顶点为,且,则此椭圆长轴的长为(       ).

    A.

    B.

    C.

    D.

  • 15、已知是函数的极小值点,则       

    A.

    B.

    C.

    D.4

二、填空题 (共10题,共 50分)
  • 16、已知点在圆上,点,则下列说法正确的是________

    ①点到直线的距离小于

    ②点到直线的距离大于

    ③当最小时,

    ④当最大时,

  • 17、已知直线与直线垂直,则__________

  • 18、函数的单调增区间为___________

  • 19、斜率为的直线经过抛物线的焦点,且与抛物线交于AB两点,则线段的长为__________

  • 20、若函数,且是函数fx)的导函数,则等于______

  • 21、,则的取值范围是______

  • 22、已知函数,若过点的直线与曲线相切,则该直线斜率为______

  • 23、如图,在中,边上的点,且满足,则___________.

  • 24、是数列的前项和,若,则______.

  • 25、如图所示,正方体的棱长为1,线段上有两个动点,且,则下列有四个结论:①;②平面;③三棱锥的体积为定值;④的面积与的面积相等.其中正确的结论序号是_________.(填上你认为正确的所有结论的序号)

     

三、解答题 (共5题,共 25分)
  • 26、如图,已知边长为2的正方形ABCD,F为BC边上的动点,E为CD的中点,现沿AE将平面ADE向上折起,使二面角D-AE-B为直二面角.

    (1)求四棱锥D-ABCE的体积;

    (2)若AD⊥平面DEF,求CF的长.

  • 27、如图,在四棱锥中,中点,且平面.

    (1)求点到平面的距离;

    (2)线段上是否存在一点,使平面?如果不存在,请说明理由;如果存在,求的值.

  • 28、已知双曲线的右焦点为,虚轴长为

    (1)求双曲线的方程;

    (2)若直线与双曲线交于两点,且线段的中点为,求直线的方程.

  • 29、如图,在四棱锥中,平面,底面为平行四边形,.点上,且平面.

    (1)证明:

    (2)求的值;

    (3)求点到平面的距离.

  • 30、用数学归纳法证明:如果是一个公差为d的等差数列,那么对任何都成立.

查看答案
下载试卷
得分 150
题数 30

类型 期末考试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
范文来(fanwenlai.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 范文来 fanwenlai.com 版权所有 滇ICP备2023002272号-32