1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、丙烯酸是非常重要的化工原料之一,可用甘油催化转化如下:
甘油丙烯醛
丙烯酸
,
已知:反应Ⅰ:
(活化能)
反应Ⅱ:
(活化能)
甘油常压沸点为290℃,工业生产选择反应温度为300℃,常压下进行。
(1)①反应Ⅰ在_______条件下能自发进行(填“高温”或“低温”);
②若想增大反应Ⅱ的平衡常数K,改变条件后该反应_______(选填编号)
A.一定向正反应方向移动 B.在平衡移动时正反应速率先增大后减小
C.一定向逆反应方向移动 D.在平衡移动时逆反应速率先减小后增大
(2)工业生产选择反应温度为300℃,忽略催化剂活性受温度影响,分析温度不能过低理由是_______。
(3)工业制备丙烯酸的中间产物丙烯醛有剧毒,选择催化剂_______能使工业生产更加安全。(选填编号)
催化剂A:能大幅降低和
催化剂B:能大幅降低,
几乎无影响
催化剂C:能大幅降低,
几乎无影响
催化剂D:能升高和
(4)①温度350℃,向1L恒容密闭反应器中加入1.00mol甘油和进行该实验。同时发生副反应:
。实验达到平衡时,甘油的转化率为80%。乙酸和丙烯酸的选择性随时间变化如图所示,计算反应
的平衡常数为_______(X的选择性:指转化的甘油中生成X的百分比)
②调节不同浓度氧气进行对照实验,发现浓度过高会降低丙烯酸的选择性,理由是_______。
(5)关于该实验的下列理解,正确的是_______。
A.增大体系压强,有利于提高甘油的平衡转化率
B.反应的相同时间,选择不同的催化剂,丙烯酸在产物中的体积分数不变
C.适量的氧气能抑制催化剂表面积碳,提高生产效率
D.升高反应温度,可能发生副反应生成COx,从而降低丙烯酸的产率
3、W固体受热分解为三种产物,其产物之间又能发生反应的转化关系如下图所示,试推断并回答填空:
(1)写出下列物质的化学式:A E
(2)写出W受热分解反应的化学方程式:
(3)写出D+A→W+E+H2O反应的离子方程式: .
4、元素铬(Cr)在溶液中主要以Cr3+(蓝紫色)、Cr(OH)4−(绿色)、Cr2O72−(橙红色)、CrO42−(黄色)等形式存在,Cr(OH)3为难溶于水的灰蓝色固体,回答下列问题:
(1)Cr3+ 与 Al3+ 的化学性质相似,在Cr2(SO4)3 溶液中逐滴加入NaOH溶液直至过量,可观察到的现象是_________。
(2)CrO42− 和 Cr2O72− 在溶液中可相互转化。室温下,初始浓度为1. 0 mol·L−1的Na2CrO4 溶液中c(Cr2O72−) 随c(H+) 的变化如图所示。
①用离子方程式表示Na2CrO4溶液中的转化反应____________。
②由图可知,溶液酸性减小,CrO42− 的平衡转化率__________(填“增大”“减小”或“不变”)。根据A点数据,计算出该转化反应的逆反应的平衡常数为__________。
③升高温度,溶液中CrO42−的平衡转化率减小,则该反应的ΔH____0(填“大于”“小于”或“等于”)。
(3)+6价铬的化合物毒性较大,常用NaHSO3将废液中的 Cr2O72− 还原成 Cr3+,反应的离子方程式为______________。
5、CO、SO2是主要的大气污染气体,利用化学反应原理是治理污染的重要方法.
Ⅰ.甲醇可以补充和部分替代石油燃料,缓解能源紧张,利用CO可以合成甲醇.
(1)已知:CO(g)+1/2O2(g)═CO2(g)ΔH1=-283.0kJ·mol-1
H2(g)+1/2O2(g)═H2O(l)ΔH2=-285.8kJ·mol-1
CH3OH(g)+3/2O2(g)═CO2(g)+2H2O(l)ΔH3=-764.6 kJ·mol-1
请写出CO与H2合成甲醇蒸汽的热化学方程式____________________
(2)一定条件下,在溶剂为VL的密闭容器中充入a molCO与2a molH2合成甲醇,平衡转化率与温度、压强的关系如图所示.
①该反应在A点的平衡常数K=_________________(用a和V表示)
②下列能说明反应达到平衡状态的是_____
A.v(CO)=v(H2) B.混合气体的密度不变
C.混合气体的平均相对分子质量不变 D. c(CO)=c(H2)
③写出能增大v(CO)又能提高CO转化率的一项措施_____________________________
Ⅱ.某学习小组以SO2为原料,采用电化学方法制取硫酸。
(3)原电池原理:该小组设计的原理示意图如左下图,写出该电池负极的电极反应式______。
(4)电解原理:该小组用Na2SO3溶液充分吸收SO2得到NaHSO3溶液,然后电解该溶液制得了硫酸。原理如图,写出开始电解时阳极的电极反应式________________。
(5)已知25℃时由Na2SO3和NaHSO3形成的混合溶液恰好呈中性,则该混合溶液中各离子浓度的大小顺序为________________________________(已知25℃时,H2SO3的电离平衡常数Ka1=1×10-2,Ka2=1×10-7)
6、铝、锌、铁在人类生产和生活中有重要作用,也是人体必需的微量元素。回答下列问题:
(1)Fe2+电子排布式为___,Zn的基态原子能级最高的电子的电子云轮廓图形状为___。
(2)已知Al的第一电离能为578kJ·mol-1、Mg的第一电离能为740kJ·mol-1,请解释Mg的第一电离能比Al大的原因___。
(3)Zn2+可形成[Zn(NH3)6]SO4络合物,1mol[Zn(NH3)6]2+配离子中含σ键___mol,其阴离子中心原子的杂化方式是___,NH3的沸点高于PH3的原因是___。
(4)已知Zn2+等过渡元素离子形成的水合离子的颜色如下表所示:
离子 | Sc3+ | Cr3+ | Fe2+ | Zn2+ |
水合离子的颜色 | 无色 | 绿色 | 浅绿色 | 无色 |
请根据原子结构推测Sc3+、Zn2+的水合离子为无色的原因:___。
(5)FeCl3中的化学键具有明显的共价性,蒸汽状态下以双聚分子存在的FeCl3的结构式为___,其中Fe的配位数为___。
(6)Fe和N可组成一种过渡金属氮化物,其晶胞如图所示。六棱柱底边边长为xcm,高为ycm,NA为阿伏加德罗常数的值,则晶胞的密度为___g·cm-3(列出计算式即可)。
7、金属硫化物和硫酸盐在工农业生产中有广泛应用。
(1)二硫化钼(MoS2)是重要的固体润滑剂。
向体积为2L的恒容密闭容器中加入0.1molMoS2、0.2molNa2CO3,并充入0.4molH2,
发生反应:MoS2(s)+2Na2CO3(s)+4H2(g)Mo(s) +2CO(g) + 4H2O(g) + 2Na2S(s) △H =akJ • mol-1,测得在不同温度下达到平衡时各气体的物质的量分数如图所示。
①a________0(填“<”“>”“=”,下同)。
②容器内的总压:P点________Q点。
③P点对应温度下,H2的平衡转化率为________,平衡常数K=________。
(2)辉铜矿(主要成分是Cu2S)在冶炼过程中会产生大量的SO2。已知冶炼过程中部分反应为:
①2Cu2S(s)+3O2(g)=2Cu2O(s)+2SO2(g) △H=-768.2kJ/mol
②2Cu2O+Cu2S(s)=6Cu(s)+SO2(g) △H=+116kJ/mol,则Cu2S与O2反应生成Cu与SO2的热化学方程式为___________________________。
(3)回收处理SO2的方法之一是用氨水将其转化为NH4HSO3。已知常温下 Kb(NH3•H2O) =1.5×l0-5 Ka1(H2SO3) =1.6×l0-2 Ka2(H2SO3)=1×10-7,若吸收过程中氨水与SO2恰好完全反应,则所得溶液在常温下的pH________7(填“>”“ <”或“=”,下同),溶液中c(SO32-)________c(H2SO3)。
(4)在500℃下硫酸铵分解会得到4种产物,其含氮物质的物质的量随时间的变化如上图所示。则该条件下硫酸铵分解的化学方程式为_________________________。
8、
铁及其氧化物是日常生活生产中应用广泛的材料。请回答下列问题:
(l)基态铁原子的价电子轨道表达式为__________。
(2)铁元素常见的离子有Fe2+和Fe3+,稳定性Fe2+_______Fe2+(填“大于”或“小于”),原因是________________。
(3)纳米氧化铁能催化火箭推进剂NH4ClO4的分解,NH4+的结构式为______(标出配位键),空间构型为_________,其中氮原子的杂化方式为_______;与ClO4-互为等电子体的分子或离子有__________(任写两种)。
(4)金属铁晶体原子采用________堆积.铁晶体的空间利用率为______(用含π的式子表示)。
(5)某种离子型铁的氧化物晶胞如图所示,它由A、B方块组成。则该权化物中Fe2+、Fe3+、O2-的个数比为_______(填最简整数比);己知该晶体的密度为dg/cm3,阿伏加德罗常数的值为NA,则品胞参数a 为_______nm(用含d 和NA的代数式表示)。
9、回答下列问题
(1)已知金刚石的莫氏硬度为10,石墨的莫氏硬度为,从晶体结构的角度解释金刚石硬度很大,石墨很软的原因__________。
(2)在相同温度时,酸性条件下都能被
氧化,通过控制溶液中
探究同浓度的
还原性强弱,预测同浓度的
被
氧化需要的
最小的是________,试从离子结构角度解释
的还原性逐渐增强的原因________。
10、下图为足量铜与浓硫酸反应的装置。请回答:
(1)写出盛放有铜片的仪器名称____________。
(2)检查装置气密性的操作为____________。
(3)下列有关该实验的说法中正确的是____________。
A.烧杯中氢氧化钠溶液的作用是吸收尾气,防止空气污染
B.实验时可以观察到圆底烧瓶中溶液由无色最终变为蓝色
C.含 0.08 mol 溶质的浓硫酸与足量的铜片反应,能收集到896mL(标准状况)的SO2
D.在该实验中浓硫酸体现了酸性和强氧化性
E.如果 B 中盛有少量 KMnO4 溶液,反应一段时间后,可以观察到紫色褪去,说明SO2具有漂白性。
11、取0.592gNa2CO3和NaHCO3的混合物溶于水配成50mL溶液,往溶液中加入50mLBa(OH)2溶液恰好使生成白色沉淀的量最多。常温下测得反应后溶液的pH=13(混合溶液体积改变忽略不计)。原混合物中n(Na2CO3)∶n(NaHCO3)=_____。写出简要计算过程_____。
12、主要成分为的工业废气的回收利用有重要意义。
(1)回收单质硫。将三分之一的燃烧,产生的
与其余
混合后反应:
。在某温度下达到平衡,测得密闭系统中各组分浓度分别为
、
、
,计算该温度下的平衡常数
_______。
(2)热解制
。根据文献,将
和
的混合气体导入石英管反应器热解(一边进料,另一边出料),发生如下反应:
Ⅰ
Ⅱ
总反应:
Ⅲ
投料按体积之比,并用
稀释;常压,不同温度下反应相同时间后,测得
和
体积分数如下表:
温度/ | 950 | 1000 | 1050 | 1100 | 1150 |
0.5 | 1.5 | 3.6 | 5.5 | 8.5 | |
0.0 | 0.0 | 0.1 | 0.4 | 1.8 |
请回答:
①反应Ⅲ能自发进行的条件是_______。
②下列说法正确的是_______。
A.其他条件不变时,用Ar替代作稀释气体,对实验结果几乎无影响
B.其他条件不变时,温度越高,的转化率越高
C.由实验数据推出中的
键强于
中的
键
D.恒温恒压下,增加的体积分数,
的浓度升高
③若将反应Ⅲ看成由反应Ⅰ和反应Ⅱ两步进行,画出由反应原料经两步生成产物的反应过程能量示意图_______。
④在,常压下,保持通入的
体积分数不变,提高投料比
,
的转化率不变,原因是_______。
⑤在范围内(其他条件不变),
的体积分数随温度升高发生变化,写出该变化规律并分析原因_______。
13、H2S广泛存在于天然气等燃气及废水中,热分解或氧化H2S有利于环境保护并回收硫资源。回答下列问题:
(1)用氯气除去废水中H2S的反应为Cl2(aq)+H2S(aq) ⇌S(s)+2HCl(aq),该反应的正、逆反应速率表达式分别为v正=k正×c(Cl2)×c(H2S),v逆=k逆×c2(HCl),(k正、k逆分别为正、逆反应的反应速率常数,只与温度有关),化学平衡常数K与k正、k逆的关系是_______。
(2)H2S可用于高效制取氢气,发生的反应为2H2S(g) ⇌S2(g)+2H2(g).若起始时容器中只有H2S,平衡时三种物质的物质的量与裂解温度的关系如图1所示:
①A、B两点化学平衡常数较大的是_______(填“KA”或“KB”)。
②A点时S2的体积分数是_______。
③若在两个等体积的恒容容器中分别加入2.0 mol H2S、1.0 mol H2S,测得不同温度下H2S的平衡转化率如图2所示。代表1.0 mol H2S分解的曲线是____(填“甲”或“乙”);M、N两点容器内的压强:P(N)_____2P(M)(填“大于”或“小于”)。
(3)Binoist等进行了H2S热分解实验:2H2S(g)=2H2(g)+S2(g),开始时,当1mol H2S与23.75mol Ar混合,在101kPa及不同温度下反应达平衡时H2、H2S及S2(g)的体积分数如图3所示,
该反应在Q点对应温度下的平衡常数Kp=_______kPa(K为以分压表示的平衡常数,分压=总压x物质的量分数,结果保留小数点后两位)。
(4)利用如图所示的电化学装置处理工业尾气中的硫化氢可实现硫元素的回收,写出甲电极上的电极方程式_______。