1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。其材料有单晶硅,还有铜、锗、镓、硒等化合物。
(1)基态亚铜离子中电子占据的原子轨道数目为____________。
(2)若基态硒原子价层电子排布式写成4s24px24py4,则其违背了____________。
(3)左下图表示碳、硅和磷元素的四级电离能变化趋势,其中表示磷的曲线是____________(填标号)。
(4)单晶硅可由二氧化硅制得,二氧化硅晶体结构如右上图所示,在二氧化硅晶体中,Si、O
原子所连接的最小环为____________元环,则每个O原子连接____________个最小环。
(5)与镓元素处于同一主族的硼元素具有缺电子性。自然界中含硼元素的钠盐是一种天然矿藏,其化学式写作Na2B4O7·10H2O,实际上它的结构单元是由两个H3BO3和两个[B(OH)4]-缩合而成的双六元环,应该写成Na2[B4O5(OH)4]8H2O.其结构如图所示,它的阴离子可形成链状结构。
①该晶体中不存在的作用力是____________(填选项字母)。
A.离子键B.共价键C.金属键D.范德华力E.氢键
②阴离子通过____________相互结合形成链状结构。
(6)氮化嫁(GaN)的晶体结构如图所示。晶体中N、Ga原子的轨道杂化类型是否相同____________(填“是”或“否”),判断该晶体结构中存在配位键的依据是____________。
(7)某光电材料由锗的氧化物与铜的氧化物按一定比例熔合而成,其中锗的氧化物晶胞结构如下图所示,该物质的化学式为____________。已知该晶体密度为7.4g/cm3,晶胞边长为4.3×10-10m。则锗的相对原子质量为____________(保留小数点后一位)。
3、
(1)W原子的核外电子排布式为_________。
(2)均由X、Y、Z三种元素组成的三种常见物质A、B、C分别属于酸、碱、盐,其化学式依次为_________、__________、_________,推测盐中阴离子的空间构型为__________,其中心原子杂化方式为__________。
(3)Z、W两种元素电负性的大小关系为____;Y、Z两种元素第一电离能的大小关系为____。
(4)CO的结构可表示为CO,元素Y的单质Y2的结构也可表示为Y
Y。右表是两者的键能数据(单位:kJ·mol-1):
①结合数据说明CO比Y2活泼的原因:_____。
②意大利罗马大学Fulvio Cacace等人获得了极具研究意义的Y4分子,其结构如图所示,请结合上表数据分析,下列说法中,正确的是_____。
A.Y4为一种新型化合物 B.Y4与Y2互为同素异形体
C.Y4的沸点比P4(白磷)高 D.1 mol Y4气体转变为Y2将放出954.6kJ热量
4、甲、乙、丙是常见的三种物质,它们之间有如图所示的转化关系,根据要求回答问题:
(1)若甲为碳,则产物乙、丙可合成甲醇。
①已知:CH4(g)+H2O(g)CO(g)+3H2(g) △H=+206.0kJ•mol-1
CH4(g)+H2O(g)CH3OH(g)+H2(g) △H=+77.0kJ•mol-1
写出气体乙与气体丙反应生成CH3OH(g)的热化学方程式______________________;
②乙和丙合成甲醇的反应在不同温度下的化学平衡常数(K)如右表,则T1_____T2(填“>”、“<”或“=”);
③乙可做某些碱性燃料电池的燃料,该电池的负极反应式为______________________;
(2)在25℃下,将0.20mol/L的氨水与0.20mol/L的硝酸溶液等体积混合,反应后的溶液pH=5,则该温度下氨水的电离平衡常数K=_____________;
(3)已知:R(s)+2NO(g)N2(g)+RO2(g)。T℃时,某研究小组向一恒温真空容器中充入NO和足量的R单质,恒温条件下测得不同时间各物质的浓度如下表。
时间/min浓度(mol/L) | NO | N2 | RO2 |
0 | 1.00 | 0 | 0 |
10 | 0.58 | 0.21 | 0.21 |
20 | 0.40 | 0•30 | 0.30 |
30 | 0.40 | 0.30 | 0.30 |
35 | 0.32 | 0.34 | 0.15 |
①0~10min以V(NO)表示的平均反应速率为_____________;
②根据表中数据,计算T℃时该反应的平衡常数为___________;
③30~35min改变的实验条件是__________。
5、以钛铁矿(主要成分为,还含有MgO、CaO、
等杂质)为原料合成锂离子电池的电极材料钛酸锂(
)和磷酸亚铁锂(
)的工艺流程如图:
已知:“溶浸”后的溶液中含金属元素的离子主要包括、
、
、
;富铁元素主要以
形式存在;富钛渣中钛元素主要以
形式存在。
回答下列问题:
(1)“溶浸”时为加快浸取速率,可以采取的措施是___________(答1条即可);“溶浸”过程发生反应的离子方程式为___________。
(2)若在实验室模拟分离富钛渣和富铁液,则检验富钛渣洗涤干净的操作为___________。
(3)“沉铁”过程中需控制,其目的是___________(答1条即可)。
(4)“溶钛”过程中Ti元素的浸出率与反应温度的关系如图所示,试分析40℃后Ti元素浸出率呈图像所示变化的原因:___________。
(5)的晶胞结构如图1所示,设该晶胞的边长为a nm,
为阿伏伽德罗常数的值。Ti的价电子排布式为___________,该晶体的密度
___________(填含a的计算式)g⋅cm-3;
的结构的另一种表示如图2(晶胞中未标出Ti、O原子),画出沿z轴向xy平面投影时氧原子在xy平面的位置:
。________
6、(1)路易斯酸碱电子理论认为,凡是能给出电子对的物质叫做碱;凡是能接受电子对的物质叫做酸。BF3和NH3分别属于是___、___(酸或者碱)。
(2)金属铯(Cs)位于元素周期表中第6周期第IA族,氯化钠与氯化铯晶体中离子的排列方式如图所示:
造成两种化合物晶体结构不同的原因是___。
7、由丙烯经下列反应可制得F、G两种高分子化合物,它们都是常用的塑料。化合物有E最早发现于酸牛奶中,它是人体内糖代谢的中间体,可由马铃薯.玉米淀粉等发酵制得,E的钙盐是人们喜爱的补钙剂之一。
已知:
(1)D中所含官能团名称。E→G的反应类型为_________。
(2)聚合物F的结构简式。聚合物G的结构简式_________
(3)在一定条件下,两分子E在浓硫酸作用下形成一种六元环状化合物,该化合物的结构简式是_________。
(4)B转化为C的化学反应方程式是_________。
(5)下列四种化合物与E互为同分异构体的是_________。
8、化合物C是一种合成药品的中间体,其合成路线为:
已知:
(1)写出中宮能团的名称_____________。
(2)写出反应①的化学方程式_________________。
(3)反成②属于_______反应(填有机反应类型)。
(4)D是比多一个碳的同系物,则满足下列条件的D的间分异构体共有______种,写出一种满足条件且含4种不同氢原+的同分异构体的结构简式 __________。
①显弱碱性,易被氧化 ②分子内含有苯环 ③能发生水解反应
(5)请你设计由A合成B的合成路线。 __________
提示:①合成过程中无机试剂任选;②合成路线表示方法示例如下:
9、硫和碳及其化合物广泛存在于自然界中,并被人们广泛利用。回答下列问题:
(1)当基态原子的电子吸收能量后,电子会发生____,某处于激发态的S原子,其中1个3s电子跃迁到3p轨道中,该激发态S原子的核外电子排布式为__________。硫所在周期中,第一电离能最大的元素是___________。(填元素符号)
(2)写出一个与CO2具有相同空间结构和键合形式的分子的电子式__________________。
(3)H2S中S原子的杂化类型是__________;H2S的VSEPR模型名称为_________;H2S的键角约为94°,H2O的键角为105°,其原因是___________________________。
(4)科学家通过X射线推测胆矾结构示意图1如下:
其中含有________个配位键,___________个氢键。
(5)已知Zn和Hg同属IIB族元素,火山喷出的岩浆是一种复杂的混合物,冷却时,许多矿物相继析出,其中所含的ZnS矿物先于HgS矿物析出,原因是_________________________________。
(6)碳的另一种同素异形体—石墨,其晶体结构如上图2所示,虚线勾勒出的是其晶胞。则石墨晶胞含碳原子个数为____个,已知石墨的密度为pg·cm-1,C-C键长为rcm,阿伏伽德罗常数的值为NA,计算石墨晶体的层间距为____cm。
10、乙酰水杨酸即阿司匹林,是世界上应用最广泛的解热、镇痛和抗炎药。可由水杨酸与乙酸酐通过如下步骤制得:
I.如图所示,在125mL的干燥锥形瓶中加入2g水杨酸、5mL乙酸酐(约0. 05mol)、5滴浓硫酸,小心旋转锥形瓶使水杨酸全部溶解后,控制温度在85 ~90℃加热5~10min。
Ⅱ.取出锥形瓶,边摇边滴加1mL冷水,然后快速加入50mL冷水,并用玻璃棒摩擦内壁,晶体完全析出后,经一系列操作,得到粗产品。
Ⅲ.将粗产品慢慢加入饱和碳酸氢钠溶液。
Ⅳ.过滤,用5~ 10mL水冲洗漏斗,合并滤液。
Ⅴ.将滤液倒入预先盛有4~5mL浓盐酸和10mL水配成溶液的烧杯中,搅拌均匀,即析出乙酰水杨酸。
Ⅵ.经一系列操作后,得到1.5g乙酰水杨酸。
Ⅶ.实验数据处理:
| 实际质量/g | 产率 |
乙酰水杨酸 | 1.5 | b |
已知:
①主反应
副反应
②乙酸酐遇水可以水解生成乙酸
③主要试剂物理常数:
药品名称 | 相对分子质量 | 水溶性 |
水杨酸 | 138 | 微溶于冷水易溶于热水 |
乙酰水杨酸 | 180 | 微溶于水 |
水杨酸聚合物 | —— | 难溶于水 |
回答下列问题:
(1)Ⅰ中的反应容器需要干燥的原因是___________。
(2)Ⅱ中用玻璃棒摩擦内壁的作用是___________ 。
(3)Ⅲ中加入饱和碳酸氢钠溶液的作用是___________,从而除去水杨酸聚合物等难溶性杂质。
(4)Ⅳ中 合并滤液的目的是___________。
(5)Ⅴ中倒入盐酸溶液主要发生的化学方程式为___________。
(6)Ⅵ中“一系列操作”包括___________ 。
(7)Ⅶ中b=___________(用百分数表示,保留小数点后一位)。
11、硝酸工业生产中的尾气可用纯碱溶液吸收,有关的化学反应为:
2NO2+Na2CO3→NaNO2+NaNO3+CO2↑ ①
NO+NO2+Na2CO3→2NaNO2+CO2↑ ②
(1)根据反应①,每产生22.4 L(标准状况下)CO2,吸收液质量将增加_____________g。
(2)配制1000 g质量分数为21.2%的纯碱吸收液,需Na2CO3·10H2O_____________g。
(3)现有1000 g质量分数为21.2%的纯碱吸收液,吸收硝酸工业尾气,每产生22.4 L(标准状况)CO2时,吸收液质量就增加44 g。
① 计算吸收液中NaNO2和NaNO3物质的量之比。
② 1000 g质量分数为21.2%的纯碱在20℃经充分吸收硝酸工业尾气后,蒸发掉688 g水,冷却到0℃,最多可析出NaNO2多少克?(0℃时,NaNO2的溶解度为71.2g/100g水)
12、全球大气CO2浓度升高对人类生产、生活产生了影响,碳及其化合物的资源化利用成为研究热点。回答下列问题:
(1)已知25℃时,大气中的CO2溶于水存在以下过程
①CO2(g)CO2(aq)
②CO2(aq)+H2O(1)H+(ag)+HCO
(aq) K
过程①的ΔH_____0(填“>”“<”或“=”)。溶液中CO2的浓度与其在大气中的分压(分压=总压×物质的量分数)成正比,比例系数为ymol·L-1·kPa-1。当大气压强为pkPa,大气中CO2(g)的物质的量分数为x时,溶液中H+的浓度为_____mol·L-1(忽略HCO和水的电离)。
(2)焦炭与水蒸气可在高温下反应制H2。
反应I:C(s)+H2O(g)CO(g)+H2(g) ΔH1=+131.3kJ·mol-1 K1
反应II:C(s)+2H2O(g)CO2(g)+2H2(g) ΔH2=+90.3kJ·mol-1 K2
反应III:CO(g)+H2O(g)CO2(g)+H2(g) ΔH3=-41.0kJ·mol-1 K3
上述反应的化学平衡常数随温度变化的关系如图所示,表示K1、K2、K3的曲线分别是c、_____、_____。
②研究表明,反应III的速率方程为v=k[x(CO)·x(H2O)-],x表示相应气体的物质的量分数,Kp为平衡常数(用平衡分压代替平衡浓度计算),k为反应的速率常数,随温度升高而增大。在气体物质的量分数和催化剂一定的情况下,反应速率随温度的变化如图所示。根据速率方程分析T>Tm时,v逐渐下降的原因是_____。
(3)甲烷干法重整制H2同时存在如下反应:
主反应:CH4(g)+CO2(g)2CO(g)+2H2(g) ΔH1
副反应:CO2(g)+H2(g)CO(g)+H2O(g) ΔH2
温度为T℃,压强为p0的恒压密闭容器中,通入2molCH4和lmolCO2发生上述反应。平衡时H2O(g)的分压为p1,甲烷的转化率为40%。
①下列说法正确的是_____(填标号)
A.ΔH1和ΔH2不变,说明反应达到平衡状态
B.相同条件下,主反应的速率大于副反应,说明主反应的活化能小
C.选用合适的催化剂可以提高主反应的选择性,增大甲烷的平衡转化率
D.平衡后,若增大压强,主反应平衡逆向移动,副反应平衡不移动
②平衡时混合气体的总物质的量为_____mol,H2(g)的分压是_____(用含p0和p1的计算式表示)。
(4)甲醇燃料电池中,吸附在催化剂表面的甲醇分子逐步脱氢得到CO,四步可能脱氢产物及其相对能量如图,则最可行途径为a⃗_____(用b-j等代号表示)。
13、某化工厂利用废旧锂离子电池的正极材料(含有LiCoO2以及少量Ca、Mg、Fe、Al等)制备Co2O3和Li2CO3的工艺流程如下:
已知:①草酸(H2C2O4)是种二元弱酸,不稳定易分解,具有还原性。
②常温时,有关物质Ksp如下表(单位已略):
Fe(OH)3 | Al(OH)3 | Co(OH)3 | Fe(OH)2 | Co(OH)2 | Mg(OH)2 | Ca(OH)2 | MgF2 | CaF2 |
2.6×10-39 | 1.3×10-33 | 4.0×10-44 | 4.9×10-17 | 5.9×10-15 | 5.6×10-12 | 4.7×10-6 | 9.0×10-9 | 1.5×10-10 |
③当离子浓度c≤1×10-5mol·L-1,可认为沉淀完全。
④常温下Li2CO3的溶解度为1.3g,Li2CO3的溶解度随温度的升高而逐渐减小。
回答下列问题:
(1)为了使拆解后的“正极材料”与酸充分反应,可采取的措施有_______(任写两种),溶解LiCoO2的反应的离子方程式为_______。
(2)“滤液I”中加入氨水调pH为5,则“滤渣Ⅱ”的主要成分是_______(填化学式)。若先调节pH并控制到5,再加入NaClO3,则NaClO3的作用为_______。
(3)若取1.0L“滤液Ⅱ”,测得Ca2+、Mg2+浓度均为0.001mol·L-1,则至少需加入_______molNH4F固体才能使Mg2+沉淀完全。
(4)生成Co2(OH)2CO3的离子方程式为_______。
(5)为了获得更多更纯的Li2CO3固体,“系列操作”依次为_______和干燥。