1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、三硫化四磷是黄绿色针状结晶,其结构如图所示。不溶于冷水,溶于叠氮酸、二硫化碳、苯等有机溶剂,在沸腾的NaOH稀溶液中会迅速水解。回答下列问题:
(1)Se是S的下一周期同主族元素,其核外电子排布式为____________。
(2)第一电离能:S______(填“>”、“<”或“=”,下同)P,电负性:S_____P。
(3)三硫化四磷分子中P原子采取_________杂化,与PO3-互为等电子体的化合物分子的化学式为_______。
(4)二硫化碳属于________(填“极性”或“非极性”)分子。
(5)用NA表示阿伏伽德罗常数的数值,0.1mol三硫化四磷分子中含有的孤电子对数为_________。
(6)叠氮酸(HN3)在常温下是一种液体,沸点较高,为308.8K,主要原因是_____________。
(7)氢氧化钠具有NaCl型结构,其晶胞中Na+与OH-之间的距离为αcm,晶胞中Na+的配位数为______,用NA表示阿伏加德罗常数的数值,NaOH的密度为_______g·cm-3。
3、硫酸是重要的化工生产原料,工业上常用硫铁矿焙烧生成SO2,SO2氧化到SO3,再用98.3%左右的浓硫酸吸收SO3得到“发烟”硫酸(H2SO4·SO3)。最后用制得的“发烟”硫酸配制各种不同浓度的硫酸用于工业生产。
完成下列计算:
(1)1kg98%的浓硫酸吸收SO3后,可生产___kg“发烟”硫酸。
(2)“发烟”硫酸(H2SO4·SO3)溶于水,其中SO3都转化为硫酸。若将890g“发烟”硫酸溶于水配成4.00L硫酸,该硫酸的物质的量浓度为___mol/L。
(3)硫铁矿氧化焙烧的化学反应如下:3FeS2+8O2→Fe3O4+6SO24FeS2+11O2→2Fe2O3+8SO2
①1吨含FeS280%的硫铁矿,理论上可生产多少吨98%的浓硫酸__?
②若24molFeS2完全反应耗用氧气1467.2L(标准状况),计算反应产物中Fe3O4与Fe2O3物质的量之比___。
(4)用硫化氢制取硫酸,既能充分利用资源又能保护环境,是一种很有发展前途的制备硫酸的方法。硫化氢与水蒸气的混合气体在空气中完全燃烧,再经过催化氧化冷却制得了98%的浓硫酸(整个过程中SO2损失2%,不补充水不损失水)求硫化氢在混合气中的体积分数___。
4、次磷酸(H3PO2)是一种精细化工产品,具有较强还原性,回答下列问题:
(1)H3PO2是一元中强酸,写出其电离方程式:___________。
(2)H3PO2及NaH2PO2均可将溶液中的银离子还原为银单质,从而可用于化学镀银.
①(H3PO2)中,磷元素的化合价为___________。
②利用(H3PO2)进行化学镀银反应中,氧化剂与还原剂的物质的量之比为4:1,则氧化产物为:___________(填化学式);
③NaH2PO2是 正盐还是酸式盐?___________,其溶液显___________性(填“弱酸性”、“中性”、或者“弱碱性”)。
(3)H3PO2的工业制法是:将白磷(P4)与氢氧化钡溶液反应生成PH3气体和Ba(H2PO2)2,后者再与硫酸反应,写出白磷与氢氧化钡溶液反应的化学方程式___________。
(4)(H3PO2)也可以通过电解的方法制备.工作原理如图所示(阳膜和阴膜分别只允许阳离子、阴离子通过):
①写出阳极的电极反应式___________;
②分析产品室可得到H3PO2的原因___________;
③早期采用“三室电渗析法”制备H3PO2,将“四室电渗析法”中阳极室的稀硫酸用H3PO2稀溶液代替,并撤去阳极室与产品室之间的阳膜,从而合并了阳极室与产品室,其缺点是___________杂质。该杂质产生的原因是___________。
5、【化学——选修2化学与技术】硫酸工业在国民经济中占有极其重要的地位。
(1)工业制硫酸时所用硫铁矿的主要成分为FeS2,其中硫元素的化合物为 。
(2)硫酸的最大消费渠道是化肥工业,用硫酸制造的常见化肥有 (任写一种)。
(3)硫酸生产中,根据化学平衡原理来确定的条件或措施有 (填写序号)。
A.矿石加入沸腾炉之前先粉碎 B.使用V2O5作催化剂
C.转化器中使用适宜的温度 D.净化后的炉气中要有过量的空气
E.催化氧化在常压下进行 F.吸收塔中用98.3%的浓硫酸吸收SO3
(4)在硫酸工业中,通过下列反应使二氧化硫转化为三氧化硫:
2SO2(g)+O2(g) 2SO3(g) ΔH=-98.3 kJ·mol-1
在实际工业生产中,常采用“二转二吸法”,即将第一次转化生成的SO2分离后,将未转化的SO2进行二次转化,假若两次SO2的转化率均为95%,则最终SO2的转化率为 。
(5)硫酸的工业制法过程涉及三个主要的化学反应及相应的设备(沸腾炉、转化器、吸收塔))。
①三个设备分别使反应物之间或冷热气体间进行了“对流”。请简单描述吸收塔中反应物之间是怎样对流的。
____________________________________________________________________。
②工业生产中常用氨—酸法进行尾气脱硫,以达到消除污染、废物利用的目的。用化学方程式表示其反应原理。(只写出2个方程式即可)
______________________________________________________________________
_____________________________________________________________________。
(6)实验室可利用硫酸厂炉渣(主要成分为铁的氧化物及少量FeS、SiO2等)制备聚铁和绿矾(FeSO4•7H2O),聚铁的化学式为[Fe2(OH)n(SO4)3﹣0.5n]m,制备过程如图所示,下列说法正确的是 。
A.炉渣中FeS与硫酸和氧气的反应的离子方程式为:4FeS+3O2+12H+═4Fe3++4S↓+6H2O
B.气体M的成分是SO2,通入双氧水得到硫酸,可循环使用
C.向溶液X中加入过量铁粉,充分反应后过滤得到溶液Y,再将溶液Y蒸发结晶即可得到绿矾
D.溶液Z的pH影响聚铁中铁的质量分数,若其pH偏小,将导致聚铁中铁的质量分数偏大
6、污染物的有效去除和资源的充分利用是化学造福人类的重要研究课题。工业上以硫铁矿为原料制硫酸所产生的尾气除了含有N2、O2外,还含有SO2。为了保护环境,同时提高硫酸工业的综合经济效益,应尽可能将尾气中的SO2转化为有用的产品。
治理方案Ⅰ:
(1)将尾气通入氨水中,能发生多个反应,写出其中可能发生的两个氧化还原反应的化学方程式:_______________、_______________。
治理方案Ⅱ:
某研究小组利用软锰矿(主要成分为MnO2,另含有少量铁、铝、铜、镍等金属化合物)作脱硫剂,通过如下流程既去除尾气中的SO2,又制得电池材料MnO2 (反应条件已省略)。
请回答下列问题:
(2)用MnCO3能除去溶液中Al3+和Fe3+其原因是___________________________,用MnS除去溶液中的Cu2+的离子方程式为_______________。
(3)流程图④过程中发生的主要反应的化学方程式为___________________。
(4)MnO2可作超级电容器材料。工业上用下图所示装置制备MnO2。接通电源后,A电极的电极反应式为:_______________,当制备lmol MnO2,则膜两侧电解液的质量变化差(△m左-△m右)为_______________g。
7、1913年,德国化学家哈伯实现了合成氨的工业化生产,被称作解救世界粮食危机的化学天才.现将lmolN2和3molH2投入1L的密闭容器,在一定条件下,利用如下反应模拟哈伯合成氨的工业化生产:N2(g)+3H2(g)2NH3(g)△H<0.当改变某一外界条件(温度或压强)时,NH3的体积分数ψ(NH3)变化趋势如图所示.
回答下列问题:
(1)已知:①NH3(l)═NH3(g)△H1,②N2(g)+3H2(g)2NH3(l)△H2;则反应N2(g)+3H2(g)
2NH3(g)的△H=_____________(用含△H1、△H2的代数式表示)。
(2)合成氨的平衡常数表达式为____________,平衡时,M点NH3的体积分数为10%,则N2的转化率为____________(保留两位有效数字).
(3)X轴上a点的数值比b点____________(填“大”或“小”)。上图中,Y轴表示____________(填“温度”或“压强”),判断的理由是____________。
(4)若将1mol N2和3mol H2分别投入起始容积为1L的密闭容器中,实验条件和平衡时的相关数据如表所示:
容器编号 | 实验条件 | 平衡时反应中的能量变化 |
Ⅰ | 恒温恒容 | 放热Q1kJ |
Ⅱ | 恒温恒压 | 放热Q2kJ |
Ⅲ | 恒容绝热 | 放热Q3kJ |
下列判断正确的是____________
A.放出热量:Ql<Q2<△Hl
B.N2的转化率:Ⅰ>Ⅲ
C.平衡常数:Ⅱ>Ⅰ
D.达平衡时氨气的体积分数:Ⅰ>Ⅱ
(5)常温下,向VmL amoI.L-l的稀硫酸溶液中滴加等体积bmol.L-l的氨水,恰好使混合溶液呈中性,此时溶液中c(NH4+)____________c(SO42-)(填“>”、“<”或“=”).
(6)利用氨气设计一种环保燃料电池,一极通入氨气,另一极通入空气,电解质是掺杂氧化钇(Y2O3)的氧化锆(ZrO2)晶体,它在熔融状态下能传导O2-.写出负极的电极反应式____________。
8、(1)锂空气电池比传统的锂离子电池拥有更强的蓄电能力,是传统锂电池容量的10 倍,其工作原理示意图如图所示.
放电时,b 电极为电源的___________极,电极的反应为___________,充电时,a电极应与外接电源___________极相连接。
(2) ①25℃时,将a mol/L 的NaCN 溶液与0.01mol/L 的盐酸等体积混合,反应后测得溶液 pH=7,
则(a) HCN 的电离常数Ka (用含a的代数式表示)为___________;
(b)下列关于该溶液的说法正确的是___________
A.此溶液有C(Na+)+C(H+)=C(OH-)+C(CN-)
B.此溶液有C(Na+)=C(HCN)+C(CN-)
C.混合溶液中水的电离程度一定大于该温度下纯水的电离程度
②25℃时,H2SO3HSO3-+H+的电离常数Ka=1×10-2 mol•L-1 ,则该温度下NaHSO3水解反应的平衡常数Kb=___________mol•L-1,若向NaHSO3溶液中加入少量I2,则溶液中
将___________(填“增大”、“减小”或“不变”)
(3)汽车尾气中CO、NO2在一定条件下可发生反应:4CO(g)+2NO2(g)4CO2(g)+N2(g)△H=-1200KJ/mol,一定温度下,向容积固定为 2L的密闭容器中充入一定量的 CO和 NO2,NO2 的物质的量随时间的变化曲线如图所示:
①0~10min内该反应的平均速率v(CO)=___________,从 11 min 起其他条件不变,压缩容器的容积变为 1L,则2 n NO 的变化曲线可能为图中的___________(填字母).
②恒温恒容条件下,不能说明该反应已达到平衡状态的是___________(填字母).
A.容器内混合气体颜色不再变化
B.容器内的压强保持不变
C.2v逆(NO2)=v正(N2)
D.容器内混合气体密度保持不变
9、请按要求完成下列问题。
(1)向酸性高锰酸钾溶液中通入二氧化硫气体,高锰酸钾被还原为硫酸锰(请书写离子方程式)__。
(2)向酸性硫酸亚铁溶液中滴加过量双氧水(请书写离子方程式)__。
(3)将四氧化三铁溶于过量的稀硝酸(请书写离子方程式)__。
(4)乙醇被硫酸酸化的重铬酸钾溶液氧化成乙酸,重铬酸钾被还原为硫酸铬(请完成化学方程式)__。
(5)S+NaOH=Na2Sx+Na2S2O3+H2O用含x的代数式配平方程式__。
10、过氧化氢是一种常用的绿色试剂,某学习小组针对H2O2性质进行如图实验。
Ⅰ.验证H2O2的还原性
查阅资料:H2O2溶液与氯水发生反应时表现还原性。
(1)制取氯水
①仪器X的名称是___,生成Cl2的化学方程式为___。
②饱和食盐水的作用是___。
(2)取5mL上述新制饱和氯水于试管中,向其中加入H2O2溶液至过量,产生大量气泡(该气体可使余烬复燃),还观察到溶液颜色发生的变化是___。
Ⅱ.探究Cl-、NO对H2O2分解的影响
选用CuCl2溶液和Cu(NO3)2溶液,探究Cl-、NO对H2O2分解的影响。记录数据如下:
实验 序号 | 添加试剂及用量 | H2O2完全分解所需时间/min | |
1 | amLbmol·L-1CuCl2溶液 | t1 | |
2 | amLbmol·L-1Cu(NO3)2溶液 | t2 |
(3)实验结果显示t1<t2,可得出的结论是:___(填化学式)更有利于H2O2分解。
(4)甲同学查阅资料得知:Cu2+能加速H2O2分解,K+对H2O2分解无影响。为排除Cu2+干扰,该同学进行实验:向两份50mL30%H2O2溶液中分别加入amL浓度均为___mol·L-1的___(填化学式)溶液和___(填化学式)溶液。t2min内,发现H2O2均几乎不分解。甲同学认为:在无Cu2+存在的情况下,Cl-、NO对H2O2催化分解无影响。
(5)乙同学又提出猜想:Cl-、NO对Cu2+催化H2O2分解会产生影响。于是进行如表实验。限选试剂及其标号如下:
A.amL2bmol·L-1KCl溶液 B.少量KCl固体
C.amL2bmol·L-1KNO3溶液 D.少量KNO3固体
实验序号 | 添加试剂 | H2O2完全分解所需时间/min | |
3 | 需同时加入amLbmol·L-1CuCl2溶液和①___(填标号) | t3(t3<t1) | |
4 | 需同时加入amLbmol·L-1Cu(NO3)2溶液和②___(填标号) | t4(t4>t2) |
(6)根据实验1~4中测得的H2O2完全分解所需时间,小组同学认为Cl-___(填“增强”或“减弱”,下同)Cu2+的催化效果,NO___Cu2+的催化效果。
11、将6.40g CuO和Fe2O3的混合物分成两等份,其中一份在高温下用足量CO还原后,剩余固体质量为2.40g;另一份固体用200mL某浓度的盐酸恰好溶解,则:
(1)混合物中CuO和Fe2O3的物质的量之比为_______________。
(2)所用盐酸的物质的量浓度为_______________。
12、我国力争实现2030年前碳达峰、2060年前碳中和的目标,CO2的捕集、利用与封存成为科学家研究的重要课题。
(1)CO2甲烷化反应最早由化学家PaulSabatier提出。已知:
反应I:CO2(g)+H2(g)⇌CO(g)+H2O(g) △H=+41.2kJ·mol-1
反应II:2CO(g)+2H2(g)⇌CO2(g)+CH4(g) △H=-247.1kJ·mol-1
①CO2甲烷化反应CO2(g)+4H2(g)⇌CH4(g)+2H2O(g)的△H=_______kJ·mol-1,为了提高甲烷的产率,反应适宜在_______(填“低温”、“高温”、“高压”、“低压”,可多选)条件下进行。
②反应I:CO2(g)+H2(g)⇌CO(g)+H2O(g) △H=+41.2kJ·mol-1,已知反应的v正=k正c(CO2)c(H2),v逆=k逆c(H2O)c(CO)(k正、k逆为速率常数,与温度、催化剂有关)若平衡后升高温度,则_______(填“增大”、“不变”或“减小”);若反应I在恒容绝热的容器中发生,下列情况下反应一定达到平衡状态的是_______。
A.容器内的压强不再改变
B.容器内气体密度不再改变
C.容器内c(CO2):c(H2):c(CO):c(H2O)=1:1:1:1
D.单位时间内,断开C=O键的数目和断开H-O键的数目相同
(2)在某催化剂表面:CO2(g)+3H2(g)⇌CH3OH(g)+H2O(g),利用该反应可减少CO2排放,并合成清洁能源。一定条件下,在一密闭容器中充入2molCO2和6molH2发生反应,图甲表示压强为0.1MPa和5.0MPa下CO2的平衡转化率随温度的变化关系。
其中表示压强为5.0MPa下CO2的平衡转化率随温度的变化曲线为_______(填“①”或“②”);b点对应的平衡常数Kp=_______MPa-2(Kp为以平衡分压代替平衡浓度表示的平衡常数。分压=总压×物质的量分数)。
(3)科研人员提出CeO2催化CO2合成碳酸二甲酯(DMC)的反应过程如图乙所示,由图可知其中没有O-H键断裂的步骤是_______(填“①”“②”或“③”),合成DMC的总反应化学方程式为_______(CH3OH不需标注同位素原子)。
13、将不同类型的矿物协同浸出可以节约原料。
(1)将方铅矿(主要成分为PbS,含少量等)与软锰矿(主要成分为
,含有少量
、
等)可协同浸出Pb、Mn。协同浸取的过程为:将一定质量比的方铅矿和软锰矿投入足量稀盐酸和NaCl的混合溶液中,控制反应的温度为70℃,并不断搅拌,酸浸后浸出液中含
、
、
、
、
,沉淀中含S、难溶矿渣及少量
。
已知:
①难溶于冷水,可发生反应:
;
②室温时,
的平衡常数
①写出浸取时生成的反应离子方程式:_______。
②室温时反应的平衡常数K=_______。
③其他条件一定,改变起始NaCl的浓度,反应相同时间,测得浸出液中Fe、Mn、Pb的浸出率与起始NaCl的浓度的关系如图所示。NaCl浓度越大,Fe的浸出率越低的原因是_______。
(2)将上述软锰矿与闪锌矿(主要成分为ZnS)可协同浸出Zn、Mn。协同浸取的过程为:将一定质量比的软锰矿和闪锌矿投入足量稀硫酸中,控制反应的温度为80℃,并不断搅拌,酸浸后浸出液中含、
、
、
,沉淀中含S、难溶矿渣。浸出过程中发现若加入少量
晶体,可以加快Zn、Mn浸出速率。
①研究表明,参与了Zn、Mn的浸出反应,该反应的过程可描述为_______。
②加入少量可以加快浸出速率的原因是_______。