1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、芦笋中的天冬酰胺(结构如图)和微量元素硒、铬、锰等,具有提高身体免疫力的功效。
(1)天冬酰胺所含元素中,________(填元素名称,下同)元素基态原子核外未成对电子数最多,第一电离能最大的是________。
(2)天冬酰胺中碳原子的杂化轨道类型为________,分子中σ键和π键数目之比为________。
(3)O、S、Se为同主族元素,H2O、H2S和H2Se的参数对比见表。
化学式 | 键长/nm | 键角 |
H2O | 0.99 | 104.5° |
H2S | 1.34 | 92.3° |
H2Se | 1.47 | 91.0° |
H2S的键角大于H2Se的原因可能为________________________________________。
H2O、H2S、H2Se沸点由高到低的顺序为________________,酸性由强到弱的顺序为________________。
(4)写出铬的基态原子电子排布式:________________________________________。
(5)铬为体心立方晶体,晶胞结构如图,则该晶胞中含有______个铬原子。若铬的密度为ρg·cm-3,相对原子质量为M,NA表示阿伏加德罗常数的值,则铬原子的半径为______cm。
3、SO2、NOx是主要的空气污染源,需经过处理才能排放。回答下列问题:
(1)二氧化硫在V2O5作用下的催化氧化是工业上产生硫酸的主要反应。催化反应的机理是:
第一步:SO2(g)+V2O5(s)=SO3(g)+V2O4(s) ΔH=+akJ•mol-1
第二步:V2O4(s) +O2(g)+2SO2(g)=2VOSO4(s) ΔH=-bkJ•mol-1
第三步:4VOSO4(s)+O2(g)=2V2O5(s)+4SO3(g) ΔH=-ckJ•mol-1
请写出二氧化硫催化氧化的热化学方程式___________。
(2)一定条件下,用Fe2O3作催化剂对燃煤烟气进行回收。反应为2CO(g)+SO2(g) 2CO2(g)+S(l) ΔH<0.80℃时,在容积恒为1L的密闭容器中投入总物质的量为2mol的气体,按n(CO):n(SO2)为1:1或3:1投料时SO2转化率的变化情况如图。则图中表示n(CO):n(SO2)=1:1的变化曲线为___________(填字母),若曲线bSO2的平衡转化率是42%,用SO2表示30min内的平均反应速率是___________。CO2和SO2的中心原子杂化方式分别为______,_____。
(3)一定温度下,在容积恒为1L的密闭容器中,充入0.3molNO与过量的金属Al,发生的反应存在如下平衡:Al(s)+2NO(gN2(g)+Al2O3(s) ΔH<0.已知在此条件下NO与N2的消耗速率与各自的浓度有如下关系(k1、k2为速率常数):v(NO)=k1•c2(NO),v(N2)=k2•c(N2)。
①在T1温度下,k1=0.004L•mol•min-1,k2=0.002min-1,该温度下反应的平衡常数的值为______。
②T2温度下,NO的物质的量随时间的变化如图,其平衡常数的值为___________;温度T1___________T2(填“小于”“等于”或“大于”),判断理由是___________。
4、硫化氢的转化是资源利用和环境保护的重要研究课题。将H2S和空气的混合气体通入FeCl3、FeCl2、CuCl2的混合酸性溶液中反应回收S,其物质转化如图所示。
(1)在图示的转化中:Fe2+转化为Fe3+的离子方程式是_______;当有1molH2S转化为硫单质时,若保持溶液中Fe3+的物质的量不变,需要消耗O2的物质的量为_______。
(2)在温度一定和不补加溶液的条件下,缓慢通入混合气体,并充分搅拌。欲使生成的硫单质中不含CuS,可采取的措施是_______。
(3)H2S在高温下分解生成硫蒸汽和H2。若反应在不同温度下达到平衡时,混合气体中各组分的体积分数如图所示。则H2S在高温下分解反应的化学方程式为_______。
(4)H2S具有还原性。在酸性条件下,H2S和KMnO4反应生成S、MnSO4和其它产物,写出该反应的化学方程式_______。反应中被还原的元素是_______。
(5)从电离平衡角度,结合必要的化学用语说明Na2S溶液常温下pH>7的原因:_______。
(6)已知:Cu2++H2S=CuS↓+2H+;FeS+2H+=Fe2++H2S↑。比较H2S、CuS和FeS溶解或电离出S2-的能力:_______。
5、回答下列问题:
(1)立方氮化硼(BN)是一种超硬材料,硬度仅次于金刚石;砷化镓(GaAs)是一种重要半导体材料,具有空间网状结构,比较立方氮化硼和砷化镓熔点的高低并说明理由:____。
(2)四种有机物的沸点数据如表:
物质 | CH3OH | C2H6 | CH3(CH2)9OH | CH3(CH2)9CH3 |
相对分子质量 | 32 | 30 | 158 | 156 |
沸点/℃ | 64.5 | -88.6 | 228 | 196 |
CH3OH和C2H6沸点相差较大,CH3(CH2)9OH和CH3(CH2)9CH3沸点相差较小,原因是____。
6、以TiO2为催化剂,在光照条件下可将还原为HCOO-等有机物。
(1)制备TiO2:
TiCl4转化为TiO2·xH2O的化学方程式是_______。
(2)光催化还原的反应过程如下图所示。
A侧产生HCOO-的反应式为_______。
在光照和TiO2存在下,以体积相同的0.25mol·L-1Na2CO3溶液为反应物,相同时间后检测HCOO-浓度,结果如下表。
实验 | 溶液中添加的其它成分 | 通入的气体 | |
ⅰ | - | - | 73.5 |
ⅱ | - | CO2 | 92.6 |
ⅲ | - | O2 | 2.1 |
ⅳ | Na2SO3 | - | 158.1 |
(3)推测HCO也能在该条件下被还原为HCOO-,结合表中数据说明推测的依据:_______。
(4)实验iii中HCOO-浓度明显低于实验i,可能的原因是_______。
(5)研究实验iv中HCOO-浓度明显高于实验i的原因,设计并完成实验v。
实验v:光照条件下,未添加TiO2时重复实验iv,没有检测到SO。
①实验v中检测SO的操作和现象为_______。
②对比实验iv、v,分析实验iv中Na2SO3的作用:_______(答出2点)。
7、氢能是理想的清洁能源,资源丰富。以太阳能为热源分解 Fe3O4 ,经由热化学铁氧化合物循环分解水制H2 的过程如下:
(1)过程Ⅰ:
①将O2分离出去,目的是提高Fe3O4的 。
②平衡常数K 随温度变化的关系是 。
③在压强 p1下, Fe3O4的平衡转化率随温度变化的(Fe3O4) ~ T 曲线如图 1 所示。若将压强由p1增大到p2 ,在图1 中画出 p2 的
(Fe3O4) ~ T 曲线示意图。
(2)过程Ⅱ的化学方程式是 。
(3)其他条件不变时,过程Ⅱ在不同温度下, H2O的转化率随时间的变化(H2 O) ~ t曲线如图2 所示。比较温度T1 、T2 、T3的大小关系是 ,判断依据是 。
(4)科研人员研制出透氧膜(OTM) ,它允许电子、O2-同时透过,可实现水连续分解制H2。工作时,CO、H 2O分别在透氧膜的两侧反应。工作原理示意图如下:
H2O在 侧反应(填“ a ”或“ b ”),在该侧H2O释放出H2的反应式是 。
8、NO、NO2 和CO均为大气污染物,对其治理备受关注。请回答下列问题:
I.碱液吸收法
(1)NaOH溶液可将NO和NO2的混合气体转化为NaNO2,该反应的离子方程式为_________________________________________。
(2)25℃时,HNO2的电离常数Ka=4.6×10-4。常温下,向NaNO2溶液中滴加盐酸至溶液的pH=3时,溶液中=_________(保留两位有效数字)
Ⅱ.已知综合治理NO和CO的原理为
i. 2NO(g)+2CO(g)N2(g)+2CO2 (g) △H=-746.5kJ•mol-1
ii. C(s)+ 2NO(g)N2(g)+ CO2 (g) △H= +172.5 kJ•mol-1
(3)高温下,1mol C(s)与CO2 完全反应生成CO的热化学方程式为________________________。
(4)一定条件下,某密闭容器中发生反应i和反应ii。达到平衡后,其他条件不变,升高温度,CO的体积分数_______(填“增大”“ 减小”或“无影响”)。
(5)一定条件下,恒容密闭容器中发生反应i。若起始充入的=y,NO的平衡转化率(a)与y和温度(T)的关系如图所示。
①y1_____y2(填“>”“<”或“=”)
②M点和N点对应的该反应速率:M_________N(填“>”“<”或“=”)
(6)t℃时,向容积为10L的恒压密闭容器中加入1mol C(s)和2molNO(g),发生反应ii。5min达到平衡时,测得0~5min内,用CO2表示的该反应速率v(CO2)=0.016 mol•L-1·min-1;N2的体积分数为a。则:
①t℃时,该反应的平衡常数K=_____________。
②若保持条件不变,起始向该容器中按下列配比加入物质,达到平衡时,N2的体积分数仍为a的是____________________(填选项字母)
A.0.5molC和2mol NO B.2mol N2和2mol CO2
C.1 mol C、1 mol N2和1mol CO2 D.1 mol C、1 mol NO和1mol N2
9、"碳达峰”“碳中和”是我国社会发展重大战略之一
I.中国首次实现了利用二氧化碳人工合成淀粉,其中最关键的一步是以CO2为原料制CH3OH.在某CO2催化加氢制CH3OH的反应体系中,发生的主要反应有:
①CO2(g)+H2(g)CO(g)+H2O(g) △H1=+41.1kJmo1-1
②CO(g)+2H2(g)CH3OH(g) △H2=-90.0kJmo1-1
③CO2(g)+3H2(g)CH3OH(g)+H2O(g) △H3=-48.9kJmo1-1
(1)5Mpa时,往某密闭容器中按投料比n(H2):n(CO2)=3:1充入H2和CO2反应达到平衡时,测得各组分的物质的量分数随温度变化的曲线如图所示。
①图中Y代表___________(填化学式)。
②体系中CO2的物质的量分数受温度影响不大,原因是___________。
II.CH4还原CO2是实现“双碳”经济的有效途径之一,相关的主要反应有:
①CH4(g)+CO2(g) 2CO(g)+2H2(g) K1
②CO2(g)+H2(g) CO(g)+H2O(g) K2
请回答:
(2)反应CH4(g)+3CO2(g)4CO(g)+2H2O(g)的K=___________(用K1,K2表示)。
(3)恒压,750°C时,CH4和CO2按物质的量之比1:3投料,经如下流程可实现CO2高效转化。
①写出过程ii产生H2O(g)的化学方程式___________。
②过程ii的催化剂是___________,若CH4和CO2按物质的量之比1:1投料,则会导致过程ii___________。
③过程ii平衡后通入稀有气体He,测得一段时间内CO物质的量上升,根据过程iii,结合平衡移动原理,解释CO物质的量上升的原因___________。
10、FeS是一种黑色固体,常用作固体润滑剂、废水处理剂等。可通过高温合成法和均相沉淀法合成纳米FeS。
Ⅰ高温合成法
称取一定质量还原铁粉和淡黄色硫粉,充分混合后置于真空密闭石英管中。用酒精喷灯加热。加热过程中硫粉升华成硫蒸气。持续加热至反应完全,冷却,得纳米FeS。
(1)若分别用S8和S6与等质量的铁粉反应制取FeS,消耗S8和S6的质量比为___。
(2)能说明反应已进行完全的标志是___。
Ⅱ均相沉淀法
实验室以硫酸亚铁铵[(NH4)2SO4•FeSO4•6H2O]和硫代乙酰胺(CH3CSNH2)为主要原料,利用如图装置合成纳米硫化亚铁的流程如图。
已知:硫代乙酰胺在酸性和碱性条件下均能水解。水解方程式为
CH3CSNH2+2H2O+H+=CH3COOH+H2S +NH
CH3CSNH2+3OH-=CH3COO-+S2-+NH3•H2O
(3)加入药品前检查装置气密性的操作为___。
(4)“反应”时,控制混合液pH约为9,温度70℃。三颈烧瓶内发生反应的离子方程式为___。
(5)该方法得到的产品中常混有少量Fe(OH)2杂质。有研究表明,在混合液中添加少量柠檬酸钠()可降低溶液中c(Fe2+),抑制Fe(OH)2杂质的形成。加入柠檬酸钠的能降低c(Fe2+)的原因是___。
(6)抑制硫酸亚铁铵[(NH4)2SO4•FeSO4•6H2O]为浅绿色晶体,易溶于水,不溶于乙醇。表中列出了不同温度下硫酸铵、硫酸亚铁、硫酸亚铁铵在水中的溶解度。
温度/℃ 溶解度/g 物质 | 10 | 20 | 30 | 40 | 50 | 70 |
(NH4)2SO4 | 73.0 | 75.4 | 78.0 | 81.0 | 84.5 | 91.9 |
FeSO4•7H2O | 40.0 | 48.0 | 60.0 | 73.3 | — | — |
(NH4)2SO4•FeSO4•6H2O | 18.1 | 21.2 | 24.5 | 27.9 | 31.3 | 38.5 |
补充完请整实验室制取硫酸亚铁铵晶体的实验过程:取4.0g充分洗净的铁屑,___,趁热过滤,洗涤、烘干,得未反应铁屑1.2g。向滤液中____,低温烘干,得到硫酸亚铁铵晶体。[可选用的实验试剂有:(NH4)2SO4晶体、3mol·L-1H2SO4溶液、0.1mol·L-1H2SO4溶液、蒸馏水、无水乙醇]
11、已知:5C2O42-+2MnO4-+16H+ = 2Mn2++10CO2↑+8H2O。某研究小组通过如下实验步骤测定晶体A(KxFey(C2O4)z·aH2O,其中的Fe元素为+3价)的化学式:
步骤1:准确称取A样品9.820 g,分为两等份;
步骤2:取其中一份,干燥脱水至恒重,残留物质量为4.370g;
步骤3:取另一份置于锥形瓶中,加入足量的3.000 mol·L-1 H2SO4溶液和适量蒸馏水,使用0.5000 mol·L-1 KMnO4溶液滴定,滴定终点消耗KMnO4溶液的体积为24.00 mL;
步骤4:将步骤1所得固体溶于水,加入铁粉0.2800 g,恰好完全反应。
通过计算确定晶体A的化学式(写出计算过程) _______________。
12、2021年以来,全国十六个省市将氢能源写入“十四五”规划中,氢能是助力“碳达峰、碳中和”战略目标实现的重要新能源,以为原料制
具有广阔的应用前景。在一定条件下
与
催化重整制
涉及以下反应:
主反应:
副反应:
(1)写出与
反应生成CO和
的热化学方程式_______。
(2)我国学者模拟主反应重整制,研究在Pt-Ni合金和Sn-Ni合金催化下。甲烷逐级脱氢的反应。不同催化剂的甲烷脱氢反应历程与相对能量关系如图所示(*表示吸附在催化剂表面的物质,吸附过程产生的能量称为吸附能)。
使用Sn-Ni合金作为催化剂的历程中最大能垒_______eV;脱氢反应阶段选择Pt-Ni合金作为催化剂效果更好,理由是_______。
(3)恒压条件下,
与
以等物质的量投料进行催化重整实验,
和
的平衡转化率随温度的变化曲线如图所示。
①曲线_______(填“A”或“B”)表示的平衡转化率。
②X点的速率:v(正)_______v(逆)(填“>”“<”或“=”),判断依据是_______。
③800 K时,主反应的平衡常数_______(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。
(4)科学家研发出一种新系统,通过“溶解”水中的触发电化学反应,该装置可有效减少碳的排放,并得到氢能源,其工作原理如图所示。则生成
的电极反应式为_______。
13、由N、B等元素组成的新型材料在工农业生产和科技领域有着广泛应用。回答下列问题:
(1)下列B原子电子排布图表示的状态中,能量最低和最高的分别为____(填选项字母)。
A.
B.
C.
D.
(2)电负性:B____C(填“>”“<”或“=”,下同),N____O;第一电离能:B____C,N____O。
(3)硼氢化钠(NaBH4)是一种常用的还原剂,常温常压下稳定。硼氢化钠中B元素的化合价为____价,B原子的杂化轨道类型为____,BH中存在的化学键类型有____(填“极性键”非极性键”配位键”或“离子键”),BH
的空间构型为____。
(4)硼氢化钠的晶体结构如图所示,每个BH周围被____个Na+包围。假设该晶胞的边长为anm,NA为阿伏加德罗常数的值,则硼氢化钠晶体的密度ρ=____g·cm-3(用含a、NA的代数式表示)。