1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、卤族元素包括F、Cl、Br等元素。
(1)下列曲线表示卤族元素某种性质随核电荷数的变化趋势,正确的是______。
(2)利用“卤化硼法”可合成含B和N两种元素的功能陶瓷,下图为其晶胞结构示意图,则每个晶胞中含有B原子的个数为______,该功能陶瓷的化学式为______。
(3)BCl3和NCl3中心原子的杂化方式分别为__________和________。第一电离能介于B、N之间的第二周期元素有______种。
3、A、B、C、D、E、F均为周期表中前四周期的元素。请按要求回答下列问题。
(1)已知A和B为第三周期元素,其原子的第一至第四电离能如下表所示:
下列有关A、B的叙述不正确的是(____)a.离子半径A<B b.电负性A<B
c.单质的熔点A>B d.A、B的单质均能与氧化物发生置换
e.A的氧化物具有两性 f.A、B均能与氯元素构成离子晶体
(2)C是地壳中含量最高的元素,C基态原子的电子排布式为_______。Cn-比D2+少l个电子层。二者构成的晶体的结构与NaCl晶体结构相似(如图一所示),晶体中一个D2+周围和它最邻近且等距离的D2+有_____个。
(3)E元素原子的最外层电子数是其次外层电子数的2倍,则乙酸分子中E原子的杂化方式有_____。E的一种单质其有空间网状结构,晶胞结构如图2。己知位于晶胞内部的4个原子,均位于体对角线的1/4或3/4处,E-E键长为apm,则E晶体的密度为_________g/cm3(用含有NA、a的式子表示)。
(4)F与硒元素同周期,F位于p区中未成对电子最多的元素族中,F的价电子排布图为
______,FO33-离子的空间构型为__________;F第一电离能_______硒元素(填“>”或“<”)
4、水中溶解氧是水生生物生存不可缺少的条件,某课外小组用碘量法测定沱江河中的溶解氧。实验步骤及测定原理如下:
I.采集水样及氧的固定:
用溶解氧瓶采集水样,记录大气压及水温。将水样与Mn(OH)2碱性悬浊液(含有KI)混合,反应生成MnO(OH)2,实现氧的固定。
Ⅱ.酸化及滴定:
将固氧后的水样酸化,MnO(OH)2被I-还原为Mn2+,在暗处静置5min,然后用标准Na2S2O3溶液滴定生成I2(2S2O32-+I2====2I-+S4O62-)。
回答下列问题:
(1)氧的固定中发生反应的化学方程式为____________________。
(2)固氧后的水样用稀H2SO4酸化,MnO(OH)2被I-还为Mn2+,发生反应的离子方程式为______________________________。
(3)标准Na2S2O3溶液的配制。
①配制amol·L-1480mL该溶液时,需要的玻璃仪器有烧杯、玻璃棒和__________。
若定容时俯视,会使配制的Na2S2O3浓度__________(选填“偏高”、“偏低”或“无影响”)
②Na2S2O3溶液不稳定,配制过程中,用蒸馏水须煮沸、冷却后才能使用,其目的是杀菌、除__________及二氧化碳。
(4)取100.00mL水样经固氧、酸化后,用amol·L-1Na2S2O3溶液滴定,以淀粉作指示剂,达到滴定终点的现象为____________________;若消耗Na2S2O3溶液的体积为bmL,则水样中溶解氧气的含量为____________________mol/L。
5、磷是人体含量较多的元素之一,磷的化合物在药物生产和农药制造等方面用途非常广泛。回答下列问题:
(1)基态磷原子的核外电子排布式为____________________。
(2)P4S3可用于制造火柴,其分子结构如图甲所示。
①第一电离能:磷_____________硫;电负性:磷_____________硫(填“>”或“<”)。
②P4S3分子中硫原子的杂化轨道类型为_____________。
③每个P4S3分子中含孤电子对的数目为______________。
(3)N、P、As、Sb均是第VA族的元素。
①上述元素的氢化物的佛点关系如图乙所示,沸点:PH3<NH3,其原因是____________;沸点:PH3<AsH3<SbH3,其原因是______________________________________。
②某种磁性氮化铁的晶胞结构如图丙所示,该化合物的化学式为______。
(4)磷化铝熔点为2000℃,它与晶体硅互为等电子体,磷化铝晶胞结构如图丁所示。
①磷化铝晶体中磷与铝微粒间的作用力为_____________________。
②图中A点和B点的原子坐标参数如图丁所示,则C点的原子坐标参数为________。
③磷化铝晶体的密度为ρg·cm-3,用NA表示阿伏加德罗常数的数值,则该晶胞中距离最近的两个铝原子之间的距离为___________cm。
6、一定条件下,在容积恒为2.0L的容器中,Fe和CO2发生如下反应: CO2(g) + Fe(s) FeO(s) + CO(g),若起始时向容器中加入1mol CO2,5.0 min后,容器内气体的相对平均分子量为32,则这段时间内ν(CO2)=_____________。
①下列说法不正确的是_______
a 当混合气体的密度不变时说明反应达到了平衡
b 混合气体的平均相对分子质量不变时说明反应达到了平衡
c 平衡后移除二氧化碳时,正反应速率一直减小直至建立新的平衡
d 平衡后缩小容器的体积,正逆反应速率不变,平衡不移动
②待反应达到平衡后再充入一定量的二氧化碳,平衡向_________移动(选填“正向”、 “逆向”、或“不”),二氧化碳的转化率________(填“增大”,“减小”或“不变”),CO的物质的量____(选填“增大”,“减小”或“不变”)。
7、硒(Se)是一种有抗癌、抗氧化作用的元素,可以形成多种化合物。
(1)基态硒原子的价层电子排布式为____________。
(2)锗、砷、硒的第一电离能大小排序为____________。H2SeO4的酸性比H2SeO3的强,其原因是__________。
(3)H2SeO3的中心原子杂化类型是_______;SeO32-的立体构型________。
(4)H2Se属于____________ (填“极性”或“非极性”)分子;单质Se的熔点为217℃,它属于_________晶体。
(5)硒化锌是一种重要的半导体材料,其晶胞结构如图所示,该晶胞中硒原子的配位数为_________;若该晶胞密度为ρg·cm-3,硒化锌的摩尔质量为Mg/mol。NA代表阿伏加德罗常数,则晶胞参数a为__________pm。
8、(14分)乙醇汽油是被广泛使用的新型清洁燃料,工业生产乙醇的一种反应原理为:2CO(g)+4H2 (g) CH3CH2OH(g)+H2O(g) △H=—256.1kJ·mol—1。
已知:H2O(l)=H2O(g) △H=+44kJ·mol—1
CO(g)+H2O(g)CO2(g)+H2(g) △H=—41.2kJ·mol—1
(1)以CO2(g)与H2(g)为原料也可合成乙醇,其热化学方程式如下:
2CO2(g)+6H2(g) CH3CH2OH(g)+3H2O(l) △H= 。
(2)CH4和H2O(g)在催化剂表面发生反应CH4+H2OCO+3H2,该反应在不同温度下的化学平衡常数如下表:
温度/℃ | 800 | 1000 | 1200 | 1400 |
平衡常数 | 0.45 | 1.92 | 276.5 | 1771.5 |
①该反应是_____反应(填“吸热”或“放热”);
②T℃时,向1L密闭容器中投入1molCH4和1mol H2O(g),平衡时c(CH4)=0.5mol·L—1,该温度下反应CH4+H2OCO+3H2的平衡常数K= 。
(3)汽车使用乙醇汽油并不能减少NOx的排放,这使NOx的有效消除成为环保领域的重要课题。某研究小组在实验室以Ag-ZSM-5 为催化剂,测得NO转化为N2的转化率随温度变化情况如图。
①若不使用CO,温度超过775℃,发现NO的分解率降低,其可能的原因为 ;在n(NO)/n(CO)=1的条件下,应控制的最佳温度在 左右。
②用CxHy(烃)催化还原NOx也可消除氮氧化物的污染。写出CH4与NO2发生反应的化学方程式: 。
(4)乙醇-空气燃料电池中使用的电解质是搀杂了Y2O3的ZrO2晶体,它在高温下能传导O2—离子。该电池负极的电极反应式为 。
9、回答下列问题:
(1)金刚石和石墨的部分物理性质数据如表:
物质 | 金刚石 | 石墨 |
熔点/℃ | 3550 | 3652 |
硬度 | 10 | 1.5 |
石墨的熔点比金刚石高,硬度却比金刚石小得多,原因是____。
(2)互为同分异构体的两种有机物形成氢键如图所示:
沸点:邻羟基苯甲醛____对羟基苯甲醛(填“>”、“=”或“<”),主要原因是____。
10、某小组利用H2C2O4溶液和酸性KMnO4溶液反应来探究“条件对化学反应速率的影响”。实验时,先分别量取两种溶液,然后倒入试管中迅速振荡,混合均匀,开始计时,通过测定褪色所需时间来判断反应的快慢。该小组设计了如下方案:
编号 | H2C2O4溶液 | 酸性KMnO4溶液 | 温度/℃ | ||
浓度(mol/L) | 体积/mL | 浓度(mol/L) | 体积/mL | ||
① | 0.10 | 2.0 | 0.01 | 4.0 | 25 |
② | 0.20 | 2.0 | 0.01 | 4.0 | 25 |
③ | 0.20 | 2.0 | 0.01 | 4.0 | 50 |
(1)已知反应后H2C2O4转化为CO2逸出,为了观察到紫色褪去,H2C2O4与KMnO4初始的物质的量需要满足的关系为:n(H2C2O4)∶n(KMnO4) ______________。
(2)探究温度对化学反应速率影响的实验编号是_______ (填编号,下同),可探究反应物浓度对化学反应速率影响的实验编号是 ________.
(3)实验①测得KMnO4溶液的褪色时间为40s,忽略混合前后溶液体积的微小变化,这段时间内平均反应速率v(KMnO4)=_______。
11、某混合物由FeSO4和Cu(NO3)2两种物质组成,为测定其中各组分的含量,进行以下实验操作,同时得到相关实验数据:
假设NO的还原产物只有NO,且完全反应。
(1)原混合物中FeSO4和Cu(NO3)2的物质的量之比为_______;
(2)上述步骤②中n=_______, 请简要写出计算过程_______。
12、我国是世界第一 稀土资源大国。稀土是一种重要的战略性资源,被广泛应用于由子信息、国防军工等多个领域。种从废弃阴极射线管(CRT)荧 光粉中提取稀土元素钇(Y)的工艺流程如下:
已知:①废弃CRT荧光粉的化学组成(某些不参与反应的杂质未列出)如下表所示;
成分 含量% 阶段 | Y2O3 | ZnO | Al2O3 | PbO2 | MgO |
预处理前 | 24.28 | 41.82 | 7.81 | 1.67 | 0.19 |
预处理后 | 68.51 | 5.42 | 4.33 | 5.43 | 0.50 |
②不同离子沉淀的pH如图所示。
(1)请结合表中的数据说明步骤I中进行原料预处理的目的为________________________________ 。
(2)步骤Ⅱ中有黄绿色气体产生,该反应的化学方程式为__________________________________。
(3)步骤Ⅲ中发生的主要反应的离子方程式为__________________________________________。
(4)步骤Ⅳ中除杂试剂DDTC除去的杂质离子有______,其不能通过直接加碱的方法除去,原因为_________。
(5)步骤V中Y3+沉淀完全时,需保证滴加草酸后的溶液中d( )不低于_______________mol/L。(已知:当离子浓度小于10-8 mol/L时,沉淀就达到该工艺要求: Ksp[Y2(C2O4)3]=8.0×10-28 )
(6)步骤Ⅵ中草酸钇隔绝空气加热可以得到Y2O3,该反应的化学方程式_______________。
13、铜转炉烟灰含金属元素(主要为Cu、Zn、Pb、Fe)的硫酸盐和氧化物以及SiO2.其有价金属回收工艺流程如下图所示。已知:25℃时,Ksp(PbSO4) =1.82×10-8,Ksp(PbCO3) =1.46×10-13。回答下列问题:
(1)“浸出液①”中所含有的金属阳离子有___________和Fe2+、Fe3+。“浸出”中,当硫酸浓度大于1.8 mol·L-1时,金属离子浸出率反而下降,原因是___________。
(2)“除杂”中,加入ZnO调pH至5.2后,用KMnO4溶液氧化后,所得滤渣主要成分为Fe(OH)3、MnO2,该氧化过程的离子方程式为___________。
(3)ZnSO4的溶解度随温度变化曲线如图所示。“浓缩结晶”的具体操作步骤为:
①在沸腾时蒸发至溶液出现晶膜,停止加热;
②降温至___________℃蒸发至溶液出现晶膜,停止加热;
③冷却至室温,过滤、洗涤、干燥。其中,步骤①的目的为___________。
(4)“转化”后,滤饼的主要成分是___________。
(5)该工艺中,可循环利用的物质是___________。
(6)蓄电池如果一直闲置不使用,也会损耗电量,这种现象称为蓄电池的自放电现象。铅酸蓄电池的负极在较高温度和较高浓度的硫酸中容易发生自放电现象,用化学方程式表示自放电的机理:___________。