1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、以碳酸镁(含少量)为原料制取硫酸镁晶体,并测定
含量:将原料完全溶于一定量的稀硫酸中,加足量的
后用
调节溶液的
,静置后过滤,除去滤渣,将滤液结晶得硫酸镁晶体。
(1)的稀硫酸至少能溶解原料的质量为______。
(2)加调节
促进
水解,写出总反应的离子方程式为______。
(3)已知:,
。室温下,若溶液中
,欲使溶液中的
,需调节溶液
范围为______。
(4)常采用下列方法测定结晶硫酸镁中的含量:
已知:①在为9~10时,
、
均能与
形成配合物
②在为5~6时,
除了与
反应,还能将
与
形成的配合物中的
“置换”出来:
步骤1:准确称取得到的硫酸镁晶体加入过量的
,配成
在9~10之间溶液
步骤2:准确移取溶液
于锥形瓶中,用
标准溶液滴定,滴定到终点,消耗标准溶液的体积为
步骤3:准确移取溶液
于另一只锥形瓶中,调节
在5~6;用
标准溶液滴定,滴定至终点,消耗
标准溶液的体积为
。
计算该结晶硫酸镁中的质量分数(请给出计算过程)。____________。
3、电镀废液中含有Cu2+、Mg2+、Ca2+、Ni2+和Fe3+,某专利申请用下列方法从该类废液中制备高纯度的铜粉。
已知导体和其接触的溶液的界面上会形成一定的电位差,被称作电极电位。如反应Cu2+(氧化态)+2e-=Cu(还原态)的标准电极电位表示为Cu2+/Cu=0.34,该值越大氧化态的氧化性越强,越小还原态的还原性越强。两个电对间的电极电位差别越大,二者之间的氧化还原反应越易发生。某些电对的电极电位如下表所示:
Fe3+/Fe2+ | Cu2+/Cu+ | Cu2+/Cu |
| Fe2+/Fe | Ni2+/Ni | Mg2+/Mg | Ca2+/Ca |
0.77 | 0.52 | 0.34 | 0.17 | -0.44 | -0.23 | -2.38 | -2.76 |
回答下列问题:
(1)蒸发浓缩后的溶液中,Cu2+的物质的量浓度≥_______(结果保留两位小数)。分离固液混合物时,需要用真空抽滤的方法提高过滤的速度和效果,其原因是_______。
(2)溶液的氧化还原电位越高,其氧化能力同样越强。溶液的氧化还原电位,与溶液中离子等微粒的种类及其浓度相关,实验测得Cu2+与SO2反应体系的氧化还原电位与铜粉的回收率和纯度的关系如下表所示:
反应液的电位(mV) | 360 | 340 | 320 | 300 | 280 | 260 |
铜粉的回收率(%) | 86.5 | 90.2 | 95.6 | 97.2 | 97.3 | 97.4 |
产品的纯度(%) | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 | 99.9 |
①由此可知,制备过程中进行电位检测时,要把溶液的氧化还原电位控制在_______mV左右。
②专利申请书指出,反应液的反应历程为Cu2+首先被还原为Cu+,Cu+再歧化为Cu和Cu2+。反应历程不是Cu2+直接被还原为Cu的原因是_______。反应生成Cu+的离子方程式是_______。
(3)废液2中含有的金属离子除Mg2+、Ca2+外还有_______。为了使这些离子均除去,使水得到进一步的净化,应该在调节溶液pH使其他杂质离子沉淀后,再使Ca2+转化为_______(填化学式)而除去。
4、以某含铜矿石[主要成分是FeCuSi3O13(OH)4,含少量SiO2、CaCO3]为原料制备CuSO4·5H2O的流程如下:
已知相关试剂成分和价格如下表所示:
请回答下列问题:
(1)含铜矿石粉碎的目的是_______。
(2)酸浸后的溶液中除了Cu2+外,还含有的金属阳离子是_______。
(3)固体1溶于NaOH溶液的离子方程式为__________。
(4)结合题中信息可知:所选用的试剂1的名称为_______;加入该试剂时,发生反应的离子方程式为_________。
(5)试剂2 可以选择下列物成中的______。滤渣2中一定含有的物质为______(填化学式)。
A. Cu B.CuO C.Cu(OH)2 D.Fe
(6)CuSO4·5H2O用于电解精炼铜时,导线中通过9.632×103C的电量,测得阳极溶解的铜为16.0g。而电解质溶液(原溶液为1 L)中恰好无CuSO4,则理论上阴极质量增加_____g,原电解液中CuSO4的浓度为__ 。已知一个电子的电量为1.6×10-19C)
5、实验室制取Fe(OH)3胶体的方法是把______逐滴加在_______中,继续煮沸,待溶液呈____ 色时停止加热,其反应的离子方程式为_______________,用 __________(方法)可证明胶体已经制成,用_____方法精制胶体。
6、纳米级Cu2O由于具有优良的催化性能而受到关注,采用肼(N2H4)燃料电池为电源,用离子交换膜控制电解液中c(OH-)制备纳米Cu2O,其装置如图甲、乙。
(1)上述装置中D电极应连接肼燃料电池的________极(填“A”或“B”),该电解池中离子交换膜为________离子交换膜(填“阴”或“阳”)。
(2)该电解池的阳极反应式为________________________________________,
肼燃料电池中A极发生的电极反应为____________________________。
(3)当反应生成14.4 g Cu2O时,至少需要肼________ mol。
7、NOx是汽车尾气中的主要污染物之一。
(1)NOx能形成酸雨,写出NO2转化为HNO3的化学方程式:__________________________。
(2)汽车发动机工作时会引发N2和O2反应,其能量变化示意图如下:
①写出该反应的热化学方程式:_______________________________。
②随温度升高,该反应化学平衡常数的变化趋势是____。
(3)在汽车尾气系统中装置催化转化器,可有效降低NOx的排放。
①当尾气中空气不足时,NOx在催化转化器中被还原成N2排出。写出NO被CO还原的化学方程式:______________________________
②当尾气中空气过量时,催化转化器中的金属氧化物吸收NOx生成盐。其吸收能力顺序如下:12MgO<20CaO<38SrO<56BaO。原因是___________________________________________,
元素的金属性逐渐增强,金属氧化物对NOx的吸收能力逐渐增强。
(4)通过NOx传感器可监测NOx的含量,其工作原理示意图如下:
①Pt电极上发生的是________反应(填“氧化”或“还原”)
②写出NiO电极的电极反应式:______________________________________。
8、(1)皂化实验中,加入的乙醇可以增大油脂与NaOH溶液的接触面积,其原因是___________。
(2)物质的摩氏硬度如下表所示:
| 金刚石 | 晶体硅 | |
摩氏硬度 | 10 | 7 |
的摩氏硬度比金刚石大的原因是___________。
9、根据实验目的,下列实验及现象、结论都正确的是
选项 | 实验目的 | 实验及现象 | 结论 |
A | 检验铁粉是否生锈 | 取铁粉溶于稀盐酸中,充分反应后滴加KSCN溶液,溶液没变红 | 铁粉没生锈 |
B | 检验电离常数Ka的大小 | 取等体积pH相同的一元酸HX和HY溶液,分别加入足量镁粉,充分反应后,HY收集的H2较多 | Ka(HX)>Ka(HY) |
C | 检验气体是否含CO | 点燃气体,产物通入澄清石灰水,变浑浊 | 气体含CO |
D | 检验某葡萄酒中是否含SO2 | 将适量葡萄酒滴入少量稀酸性高锰酸钾溶液中,溶液褪色 | 该葡萄酒中 含SO2 |
A.A
B.B
C.C
D.D
10、碳酸镧 La2(CO3)3(Mr=458)为白色粉末、难溶于水、分解温度 900℃,可用于治疗高磷酸盐血症。在溶液中制备时,形成水合碳酸镧 La2(CO3)3·xH2O,如果溶液碱性太强,易生成受热分解的碱式碳酸镧La(OH)CO3。已知酒精喷灯温度可达 1000℃。回答下列问题:
(1)用如图装置模拟制备水合碳酸镧:
①仪器 A的名称为______。
②装置接口的连接顺序为 f→______ 。
③实验过程中通入 CO2需要过量,原因是______。
④该反应中生成副产物氯化铵,请写出生成水合碳酸镧的化学方程式:______。
(2)甲小组通过以下实验验证制得的样品中不含LaOH)CO3,并测定水合碳酸镧La2(CO3)3·xH2O 中结晶水的含量,将石英玻璃 A管称重,记为 m1g。将样品装入石英玻璃管中,再次将装置 A称重,记为 m2g,将装有试剂的装置 C称重,记为 m3g。按下图连接好装置进行实验。
实验步骤:
①打开 K1、K2和 K3,缓缓通入 N2;
②数分钟后关闭 K1,K3,打开 K4,点燃酒精喷灯,加热 A中样品;
③一段时间后,熄灭酒精灯,打开 K1,通入 N2数分钟后关闭 K1和 K2,冷却到室温,称量 A.重复上述 操作步骤,直至 A恒重,记为 m4g(此时装置 A中为 La2O3)。称重装置 C,记为 m5g。
①实验中第二次通入 N2的目的为______。
②根据实验记录,当=______,说明制得的样品中不含有La(OH)CO3;计算水合碳酸镧化学式中结晶水数目x=______(列式表示)。
(3)已知某磷酸盐浓度与对应吸光度满足下图关系,磷酸盐与碳酸镧结合后吸光度为 0.取浓度为30mg/L的该磷酸盐溶液2mL,加入适量上述实验制备的水合碳酸镧,半个小时后测定溶液的吸光度为0.12,计算水合碳酸镧对磷酸盐的结合率为______(结合率 = ×100%)。
11、化学需氧量(COD)是衡量水质的重要指标之一、COD是指在特定条件下用一种强氧化剂(如)定量地氧化水体中的还原性物质所消耗的氧化剂的量(折算为氧化能力相当的
质量,单位:mg/L)。某水样的COD测定过程如下:取400.0mL水样,用硫酸酸化,加入40.00mL0.002000mol/L
溶液,充分作用后,再加入40.00mL0.005000mol/L
溶液。用0.002000mol/L
。溶液滴定,滴定终点时消耗26.00mL。
已知:
(1)1mol的氧化能力与___________g
的氧化能力相当(作氧化剂时转移的电子数相同)。
(2)该水样的COD值是___________mg/L。(写出计算过程,结果保留小数点后一位)
12、钪(Sc)元素在国防、航天、激光、核能、医疗等方面有广泛应用。赤泥含有、
、
、
等,以赤泥为原料提取氧化钪
的流程如下:
已知:①,
易水解;②常温下,“浸出液”中
,
。
回答下列问题:
(1)操作A是___________。
(2)“溶解”中作用有将
转化成
、作溶剂和___________。
(3)“萃取”是用酸性磷酸酯萃取剂(P507)、苯乙酮、磺化煤油配得的混合液作萃取剂,P507质量分数(w)对萃取率的影响如表所示、料液温度对分离系数(β)的影响如图1所示,萃取时P507最佳质量分数及料液温度分别为___________、___________。“萃取”过程中应控制pH小于___________。
[分离系数指分离后混合体系中某物质的物质的量分数,如%]
w(P507) | 分相情况 | 钪萃取率(%) | 铁萃取率(%) |
1% | 分相容易 | 90.74 | 14.89 |
2% | 分相容易 | 91.74 | 19.88 |
3% | 分相容易 | 92.14 | 13.30 |
5% | 有第三相 | 90.59 | 28.47 |
8% | 轻微乳化 | 90.59 | 34.85 |
(4)已知,
,
。“沉钪”时,发生反应:
,此反应的平衡常数
___________(用含m、n、p的代数式表示)。
(5)草酸钪晶体隔绝空气加热,
随温度的变化情况如图所示。
550℃时,晶体的成分是___________(填化学式),550~850℃,生成气体的物质的量之比为___________(已知的摩尔质量为
)。
13、“节能减排”和“低碳经济”的一项重要课题就是如何将CO2转化为可利用的资源。
I.目前工业上有一种方法是用CO2来生产燃料甲醇。
已知:H2(g)的燃烧热 ΔH= 一285.8 kJ·mol-1、CO(g)的燃烧热 ΔH=- 283.0 kJ·mol-1
反应①:CO(g) +2H2(g) CH3OH(g) ΔH1= -90.8 kJ·mol-1
反应②: H2O(l)=H2O(g) ΔH2= +44.0 kJ·mol-1
反应③:CO2(g)+ 3H2(g) CH3OH(g) +H2O(g) ΔH3
(1)ΔH3=_______ , 反应③的ΔS_______ (填“>”或“<”)0,反应③在 _______ (填“高温”“低温”或“任何温度”)下能自发进行。
(2)恒温条件下,在某恒容密闭容器中;按照n(CO2) : n(H2) =1:3投料仪发生反应③,起始气体总压强为p0,测得CO2(g)的浓度随时间变化如图所示。
①从反应开始到3 min,H2的平均反应速率v(H2)=_______mol·L-1·min-1;试在图中绘制出CH3OH(g) 的浓度随时间变化的图像_______。
②该反应的平衡常数Kp=_______ (填含 p0的表达式)。
(3)恒温条件下,在某恒压密闭容器中仅发生反应①,当反应达到平衡后,
I.降低温度,CO的平衡转化率_______ (填“不变”、“减小”或“增大”);
II.向平衡体系中通入惰性气体,平衡_______(填“向正反应方向移动”、“向逆反应方向移动”或“不移动”)。