1、如图,在中,
,
,
分别为
,
的中点,
平分
,交
于点
,若
,则
的长为( )
A.
B.
C.
D.
2、如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,连接AB,若∠B=25°,则∠P的度数为( )
A.25°
B.40°
C.45°
D.50°
3、下列计算正确的是( )
A.
B.
C.
D.
4、如图, 是
的直径,
切
于点
,
,点
在
上,
交
于
,
,则
的长是( )
A.
B.
C.
D.
5、如图是一个正方体展开图,把展开图折叠成正方体后,“你”字一面相对面上的字是( )
A.我
B.中
C.国
D.梦
6、下列计算正确的是( )
A.
B.
C.
D.
7、如图,将绕点A按逆时针方向旋转40°到
的位置,连接
,若
,则
的大小是( )
A.70°
B.60°
C.50°
D.30°
8、某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是( )
A.平均分不变,方差变大
B.平均分不变,方差变小
C.平均分和方差都不变
D.平均分和方差都改变
9、有一个正方体,6个面上分别标有1到6这6个整数,投掷这个正方体一次,则出现向上一面的数字是偶数的概率为( )
A.
B.
C.
D.
10、把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )
A. y=﹣(x﹣1)2+3 B. y=﹣(x+1)2+3
C. y=﹣(x+1)2﹣3 D. y=﹣(x﹣1)2﹣3
11、如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另一个圆锥的侧面,记这个圆锥的底面半径为r2,则的值为______.
12、如图,、
分别是
的边
、
上的点,
,若
,则
的值为________.
13、甲、乙两地相距100千米,一辆汽车从甲地开往乙地,把汽车到达乙地所用时间t(小时)表示为汽车速度v(千米/时)的函数,其函数表达式为__________.
14、函数y=的自变量x的取值范围为____________.
15、某花店三八妇女节推出“温暖”和“和煦”两款鲜花礼盒,其中“温暖”礼盒里有3支向日葵,3支洋桔梗,2支多头玫瑰;“和煦”礼盒里有2支向日葵,2支洋桔梗,6支多头玫瑰.两种礼盒的成本价分别为三种花的成本之和.已知“温暖”与“和煦”的售价分别为73.6元和97.2元.利润率分别为60%和80%.若两种礼盒的销售利润率达到75%,则花店卖出的“温暖”与“和煦”鲜花礼盒的的数量之比为_____.
16、如图,矩形纸片ABCD中,AB=1,BC=2,点M,N分别在边BC,AD上,将纸片ABCD沿直线MN对折,使点A落在CD边上,则线段BM的取值范围是______.
17、以下统计图描述了九年级(1)班学生在为期一个月的读书月活动中,三个阶段(上旬、中旬、 下旬)日人均阅读时间的情况:
(1)从统计图可知,九年级(1)班共有学生多少人;
(2)求图22.1中a的值;
(3)从图22-1、22-2 中判断,在这次读书月活动中,该班学生每日阅读时间_______(填“普遍增加了”或“普遍减少了”);
(4)通过这次读书月活动,如果该班学生初步形成了良好的每日阅读习惯,参照以上统计图的变化趋势,至读书月活动结束时,该班学生日人均阅读时间在0.5~1(即0.5≤t<10)小 时的人数比活动开展初期增加了多少人.
(每个小矩形含左端点,不含右端点) .
18、如图,在中,
,
,点
,
分别是
,
的中点,点
为射线
上一动点,连结
,作
交射线
于点
.
(1)当点在线段
上时,求
与
的大小关系;
(2)当等于多少时,
是等腰三角形.
19、如图,小区管理者打算在广场的地面上安装一盏路灯路灯高度忽略不计
小明此刻正在某建筑物的B处向下看,请问:此路灯安在什么位置,小明在B处看不到?请把这段范围用线段表示出来.
20、下列各数: (两个3之间0的个数依次增加1个),其中无理数的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
21、先化简,再求值:,其中a=
+1.
22、我县某工厂设计了一款成本为20元/件的工艺品,现投放市场进行试销,其每天的销售量y(件)与销售单价x(元/件)之间满足的函数关系如图所示.
(1)求y与x之间的函数关系式;
(2)当该工艺品的销售单价定为多少元时,工厂每天获得的利润最大?最大利润是多少?
(3)根据工厂的实际,每天销售该工艺品的利润不得低于8000元,请结合二次函数的大致图象,求出该工艺品销售单价的范围.
23、计算:
24、如图,Rt△ABC中,∠C=90°,⊙O是Rt△ABC的外接圆,过点C作⊙O的切线交BA的延长线于点E,BD⊥CE于点D,连接DO交BC于点M.
(1)求证:BC平分∠DBA;
(2)若,求
的值.