得到
  • 汉语词
  • 汉语典q
当前位置 :

2025-2026学年广东韶关高三(下)期末试卷数学

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、已知是复数,且(其中为虚数单位),则在复平面内对应的点的坐标为(  

    A. B. C. D.

  • 2、假设你和同桌玩数字游戏,两人各自在心中想一个整数,分别记为,且.如果满足,那么就称你和同桌“心灵感应”,则你和同桌“心灵感应”的概率为

    A.   B.   C.   D.

     

  • 3、

    某程序框图如图所示,若输出的S=57,则判断框内为

    A.k>4?

    B.k>5?

    C.k>6?

    D.k>7?

  • 4、已知梯形ABCD满足ABCD,∠BAD45°,以AD为焦点的双曲线Γ经过BC两点.CD7AB,则双曲线Γ的离心率为(  

    A. B. C. D.

  • 5、复数,则       

    A.0

    B.2i

    C.-2i

    D.

  • 6、函数的图象大致为(       

    A.

    B.

    C.

    D.

  • 7、函数的部分图象大致是(       

    A.

    B.

    C.

    D.

  • 8、(1+x4(1+2yaa∈N*)的展开式中,记xmyn项的系数为fmn).若f(0,1)+f(1,0)=8,则a的值为(       

    A.0

    B.1

    C.2

    D.3

  • 9、已知集合,则集合A的子集个数为(       

    A.4

    B.5

    C.6

    D.8

  • 10、平行四边形中,是平行四边形内一点,且,如,则的最大值为

    A.1

    B.2

    C.3

    D.4

  • 11、xy满足约束条件,则的最大值为(       

    A.1

    B.2

    C.3

    D.4

  • 12、CD是平面内的两个定点,,点在平面的同一,且,若与平面所成的角分别为下列关于四面体ABCD法中,不正确的是(

    A.点A在空中的运动轨迹是一个

    B的最小值为2

    C.四面体ABCD的最大值为

    D.当四面体ABCD的体达最大,其外接球的表面积为

  • 13、在等比数列中,若,则的值是( )

    A.4

    B.8

    C.16

    D.32

  • 14、《卖油翁》中写道:“(油)自钱孔入,而钱不湿”,其技艺让人叹为观止,已知铜钱是直径为的圆,中间有边长为的正方形孔,若随机向铜钱滴一滴油,则油(油滴的大小忽略不计)正好落入孔中而钱不湿的概率为(       

    A.

    B.

    C.

    D.

  • 15、已知函数的定义域为,且,若为偶函数.,则       

    A.24

    B.26

    C.28

    D.30

  • 16、设复数,则的虚部是( )

    A.   B.   C.   D.

     

  • 17、函数的图象大致是

    A.

    B.

    C.

    D.

  • 18、某四棱锥的三视图如图所示,则该四棱锥的表面积为(  

    A.8 B. C. D.

  • 19、若复数是方程的一个根,则的虚部为(       

    A.2

    B.

    C.

    D.

  • 20、如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,该几何体某条棱上的一个端点在正视图中对应的点为,在俯视图中对应的点为,则在侧视图中对应的点为(   

    A.点

    B.点

    C.点

    D.点

二、填空题 (共6题,共 30分)
  • 21、2018年4月4日,中国诗词大会第三季总决赛如期举行,依据规则:本场比赛共有甲、乙、丙、丁、戊五位选手有机会问鼎冠军,某家庭中三名诗词爱好者依据选手在之前比赛中的表现,结合自己的判断,对本场比赛的冠军进行了如下猜测:

    爸爸:冠军是乙或丁;

    妈妈:冠军一定不是丙和丁;

    孩子:冠军是甲或戊.

    比赛结束后发现:三人中只有一个人的猜测是对的,那么冠军是__________

  • 22、已知是等差数列,是公比为2的等比数列,且,则______

  • 23、在三棱锥中,底面是等边三角形,,且,则点P到面的距离为_________

  • 24、已知圆直线,过直线上的点作圆的切线,切点分别为,若存在点使得,则实数的取值范围是______.

  • 25、设i为虚数单位,若复数,则z的实部与虚部的和为______

  • 26、Pn(xnyn)是直线3x+y=(nN*)x2+y2=5在第四象限的交点,极限=___________.

三、解答题 (共6题,共 30分)
  • 27、如图,E的中点,F的中点且

     

    1)求证:面

    2)求三棱锥的体积

  • 28、某企业为改变工作作风,树立企业形象,开展了为期半年的行风整治行动,现需要对整顿之后的情况进行问卷调查,随机从收回的有效问卷中抽查100份,根据这100份问卷的评分,绘制频率分布直方图(如图所示),样本数据分组区间为.

    (1)估计评分的平均数和中位数(结果保留四位有效数字);

    (2)用分层抽样从抽取5人,然后从这5人中选取3人进行进一步调查,求这3人中只有1人来自的概率.

  • 29、如图,在三棱锥中,侧面底面是边长为2的正三角形,分别是的中点,记平面与平面的交线为.

    (1)证明:直线平面

    (2)设点在直线上,直线与平面所成的角为,异面直线所成的角为,求当为何值时,.

  • 30、某学校对甲、乙、丙、丁四支足球队进行了一次选拔赛,积分前两名的球队将代表学校参加上级比赛.选拔赛采用单循环制(每两个队比赛一场),胜一场积3分,平一场积1分,负一场积0分.经过三场比赛后,积分状况如下表所示:

     

    积分

    名次

     

     

     

     

    7

     

     

     

     

     

    1

     

     

     

     

     

    0

     

     

     

     

     

    0

     

    根据以往的比赛情况统计,乙队与丙队比赛,乙队胜或平的概率均为,乙队与丁队比赛,乙队胜、平、负的概率均为,且四个队之间比赛结果相互独立.

    (1)求选拔赛结束后,乙队与甲队并列第1名的概率;

    (2)设随机变量为选拔赛结束后乙队的积分,求随机变量的分布列与数学期望;

    (3)在目前的积分情况下,不论后面的比赛中丙队与丁队相互比赛的结果如何,乙队一定能代表学校参加上级比赛的概率是多少?说明理由.

  • 31、O为坐标原点,动点M在椭圆C上,该椭圆的左顶点A到直线的距离为

    求椭圆C的标准方程;

    若线段MN平行于y轴,满足,动点P在直线上,满足证明:过点N且垂直于OP的直线过椭圆C的右焦点F

  • 32、已知在多面体中,平面平面,且四边形为正方形,且//,点分别是的中点.

    (1)求证:平面

    (2)求平面与平面所成的锐二面角的余弦值.

查看答案
下载试卷
得分 160
题数 32

类型 期末考试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
范文来(fanwenlai.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 范文来 fanwenlai.com 版权所有 滇ICP备2023002272号-32