1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、下列实验合理的是( )
选项 | A | B | C | D |
实验装置 | ||||
实验目的 | 证明非金属性:Cl>C>Si | 吸收氨气,并防止倒吸 | 制备并收集少量NO2气体 | 制备少量氧气 |
A.A
B.B
C.C
D.D
3、Na、Al、Fe、Cu是中学化学中重要的金属元素。它们的单质及其化合物之间有很多转化关系。下表所列物质不能按如图(“→”表示一步完成)关系相互转化的是
选项 | A | B | C | D | |
a | Na | Al | Fe | Cu | |
b | NaOH | Al2O3 | FeCl3 | CuO | |
c | NaCl | Al(OH)3 | FeCl2 | CuCl2 |
A.A
B.B
C.C
D.D
4、以二氧化锰为原料制取高锰酸钾晶体的实验流程如图所示,下列有关说法正确的是
A.“灼烧”时,可在玻璃坩埚中进行
B.“浸取”时,可用无水乙醇代替水
C.“转化”反应中,通入CO2的目的是提供还原剂
D.“浓缩结晶”的目的是分离提纯KMnO4
5、金属钛性能优越,被誉为继Fe、Al后应用广泛的“第三金属”。
(1)Ti基态原子的价层电子排布图为_______________________。
(2)钛能与B、C、N、O等非金属元素形成稳定的化合物。电负性:C________(填“>”或“<”,下同)B;第一电离能:N________O,原因是____________________________________。
(3)月球岩石——玄武岩的主要成分为钛酸亚铁(FeTiO3)。FeTiO3与80%的硫酸反应可生成TiOSO4。SO42-的空间构型为_________形,其中硫原子采用_________杂化,写出SO42-的一种等电子体的化学式:____________________________。
(4)Ti的氧化物和CaO相互作用能形成钛酸盐CaTiO3,CaTiO3的晶体结构如图1所示(Ti4+位于立方体的顶点)。该晶体中,Ti4+和周围________个O2-相紧邻。
(5)铁晶胞的结构如图2所示,如果晶胞边长为a,铁原子半径为r,则该晶体中铁原子的空间利用率为________________。
6、回答下列问题:
Ⅰ.现有下列九种物质:①稀硫酸 ②石墨 ③蔗糖 ④ ⑤
固体 ⑥
固体 ⑦
溶液 ⑧
⑨熔融
固体
(1)属于电解质的有___________;(填序号)
(2)写出⑥溶于水的电离方程式:___________
(3)写出①和⑧反应的离子方程式:___________
(4)⑤和⑦在水溶液中反应的离子方程式:___________
Ⅱ.在有六种粒子在水溶液中有如图所示转化关系。请回答下列问题:
(5)双氧水是公认的绿色试剂,中氧元素的化合价___________。
(6)写出反应②的离子方程式并用双线桥标出反应的电子转移数目和方向:___________。
(7)是一种强氧化剂,酸性
可以氧化
,生成
,写出该反应的离子方程式:___________
7、(1)已知NO2和N2O4的结构式如右图所示。已知:N—N的键能为a kJ/mol,NO2和N2O4中N=O键键能分别是b kJ/mol和c kJ/mol。写出NO2转化为N2O4的热化学方程式________________(△H用a、b、c的代数式表示)。
(2)在100℃时,将0.4mol NO2放入2L的真空容器中发生反应:2NO2N2O4。测得容器内气体的物质的量随时间变化如下表:
时间/s | 0 | 20 | 40 | 60 | 80 |
n(NO2)/mol | 0.4 | n1 | 0.26 | n3 | n4 |
n(N2O4)/mol | 0 | 0.05 | n2 | 0.08 | 0.08 |
①上述条件下,前20s内以NO2表示的平均化学反应速率为_________________________;达到平衡状态时,NO2的转化率是________。
②n2_______ n3(填“>”、“=”、“<”)。
③80s时,向容器内加入NO2和N2O4各0.24mol,化学平衡将_________(填“向正反应方向移动”、“ 向逆反应方向移动”、“不移动”)。
④若将NO2的起始物质的量改为0.2mol,在相同条件下进行实验,要想达到与上述平衡相同的平衡状态,则起始时还需要加入适量的N2O4气体,则N2O4的浓度为_____________。
8、根据有机物在化学反应中断键的位置,可以准确分析产物结构并判断反应类型。有机物A中只含有C、H、O三种元素,它的球棍模型如下:
(1)A的分子式为_______,写出碳原子数比A少的A的一种同系物的结构简式____。
(2)工业中采取烯烃水化法制取A,该烯烃的结构简式为_______。
(3)A与乙酸、浓硫酸共热反应,断裂的化学键为_______(填序号,下同),该反应的有机产物中官能团的名称为_______。
(4)在Cu催化和加热条件下,A与O2反应断裂①、③两处共价键,写出该反应的化学方程式_______。
(5)A与亚硫酞氯(SOCl2)在一定条件下反应生成一种一氯代烃,A 断裂的共价键为_______,该反应类型为_______。
9、有以下有机物:
① ②CH3CH=CHC2H5 ③
④CH2=CHCH2CH=CH2 ⑤CH3-C≡C-CH2CH3 ⑥CH2=CH-CH2CH2CH2CH3 ⑦
⑧
根据要求填空:
(1)⑦的系统命名是______,⑧中最多有_____个碳原子共平面。
(2)上述物质中互为同分异构体的是_____(填序号,下同)上述烯烃中存在顺反异构的是_____。
(3)利用李比希法、现代分析仪器测定等可以确定有机物的结构。
1.68g有机物A(含C、H、O三种元素中的两种或三种)在过量氧气中充分燃烧,将燃烧后的产物依次通过浓硫酸和碱石灰,测得分别增重2.16g和5.28g。
①有机物A的质谱图如图a,该有机物A的分子式为______。
②通过红外光谱测定,有机物A中不存在碳碳双键,并且A的一氯代物只有一种结构,则A的结构简式为______。
③有机物B是A的同分异构体,B的结构中存在碳碳双键,B的核磁共振氢谱图如图b,B的结构简式为______。
10、A、B、C、D、E、F 六种物质的转化关系如图所示(反应条件和部分产物未标出).
(1)若A为短周期金属单质,D为短周期非金属单质,且所含元素的原子序数A是D的2倍,所含元素的原子最外层电子数D是A的2倍,F的浓溶液与A、D反应都有红棕色气体生成,则A的原子结构示意图为 ,反应④的化学方程式 .
(2)若A是常见的变价金属的单质,D、F是气态单质,且反应①在水溶液中进行.反应②也在水溶液中进行,其离子方程式是 ,已知光照条件下D与F方可以反应.
(3)若A、D、F都是短周期非金属元素单质,且A、D所含元素同主族,A、F所含元素同周期,则反应①的化学方程式为 .将标准状况下3.36L 物质E 与10.0g 氢氧化钠溶液充分反应,所得溶液溶质成分为 (写出化学式和对应的物质的量).
11、有A,B两种有机物,按要求回答下列问题:
(1)取有机物A 3.0 g,完全燃烧后生成3.6 g水和3.36 L CO2(标准状况),已知该有机物的蒸气对氢气的相对密度为30,求该有机物的分子式________。
(2)有机物B的分子式为C4H8O2,其红外光谱图如下,
试推测该有机物的可能结构:_________。
12、有A、B、C、D四种短周期主族元素,它们的原子序数依次增大,其中A元素原子核外电子仅有一种原子轨道,也是宇宙中最丰富的元素,B元素原子核外p电子数比s电子数少1,C为金属元素且原子核外p电子数和s电子数相等,D元素的原子核外所有p轨道全充满或半充满。
(1)写出四种元素的元素符号:
A________,B________,C________,D________。
(2)写出C、D两种元素基态原子核外电子轨道表示式。
C_______________________________________________________________,
D_______________________________________________________________。
(3)写出B、C两种元素单质在一定条件下反应的化学方程式____________________________________________。
(4)写出B元素单质和氢化物的电子式:单质________,氢化物__________。
13、国家标准(GB27602011)规定葡萄酒中SO2最大使用量为0.25 g·L-1。某兴趣小组用题图1装置(夹持装置略)收集某葡萄酒中SO2,并对含量进行测定。
(1)图2中①的仪器名称 。
(2)B中加入300.00 mL葡萄酒和适量盐酸,加热使SO2全部逸出并与C中H2O2完全反应,其化学方程式为 。
(3)除去C中过量的H2O2,然后用0.090 0 mol·L-1 的NaOH标准溶液进行滴定,滴定前排气泡时,应选择图2中的________;若滴定终点时溶液的pH=8.8,则选择的指示剂为________;滴定的终点现象 ;若用50 mL滴定管进行实验,当滴定管中的液面在刻度“10”处,则管内液体的体积 (填序号)___________(①=10 mL,②=40 mL,③<10 mL,④>40 mL)。
(4)滴定至终点时,消耗NaOH溶液25.00 mL,该葡萄酒中SO2含量为:___________g·L-1。
(5)该测定结果比实际值偏高,分析原因并利用现有装置提出改进措施______________________。
14、在标准状况下,将224LHCl气体溶于635mL水中,所得盐酸的密度为1.18g·cm-3试计算:
(1)所得盐酸的质量分数和物质的量浓度分别是___________、___________。
(2)取这种盐酸100 mL,稀释至1.18L,所得稀盐酸的物质的量浓度是___________。
(3)在40.0 mL 0.065 mol·L-1Na2CO3溶液中,逐滴加入上述稀释后的稀盐酸,边加边振荡。若使反应不产生CO2气体,加入稀盐酸的体积最多不超过___________mL。
(4)将不纯的NaOH样品1g(样品含少量Na2CO3和水),放入50mL2mol·L-1的盐酸中,充分反应后,溶液呈酸性,中和多余的酸又用去40 mL1mol·L-1的NaOH溶液。蒸发中和后的溶液,最终得到___________g固体。
15、我国科学家首次实现了二氧化碳到淀粉的人工合成,关键的一步是利用化学催化剂将高浓度还原成
。
催化加氢制
的反应体系中,发生的主要反应如下。
I.
II.
III.
回答下列问题:
(1)已知上述反应I、II、III的平衡常数K与温度T的关系为:,
,
(x、y、z、A、B、C均为常数,A、C均大于零,B小于零)。则反应I的活化能
(正)_______
(逆),
的数值范围是_______。
(2)反应I可能的反应历程如下图所示。已知:方框内包含微粒种类及数目、微粒的相对总能量;TS表示过渡态、*表示吸附在催化剂上的微粒。
则反应历程中决速步骤的反应方程式为_______。
(3)在催化剂作用下,将和
的混合气体充入一恒容密闭容器中进行反应,达平衡时,
的转化率和容器中混合气体的平均相对分子质量随温度变化如图。
①250℃后,随温度升高,平衡时混合气体的平均相对分子质量几乎不变的原因是_______。
②T℃时,反应的初始压强为,平衡时甲醇的选择性(生成甲醇消耗的
在
总消耗量中占比)为_______,反应I的平衡常数
_______(
为以分压表示的平衡常数,分压=总压×物质的量的分数)。若再向密闭容器中通入
和
,使二者分压均增大
,则
的转化率_______(填“增大”“减小”或“不变”)。
16、地球的表面积为5.1亿平方公里,其中海洋的面积为3.67亿平方公里,占整个地球表面积的70.8%。海洋是一个巨大的化学资源宝库,请回答下列问题:
Ⅰ.下面是海水资源综合利用的部分流程图:
(1)步骤①中,粗盐中含有、
、
等杂质离子,精制时常用的试剂有:a稀盐酸;b氯化钡溶液;c氢氧化钠溶液;d碳酸钠溶液。加入试剂的顺序正确的是_______(填字母)。
(2)反应④由无水制取金属镁的化学方程式是_______。
(3)步骤⑤已经获得,步骤⑥又将
还原为
,其目的是_______。
Ⅱ.海带灰中富含以形式存在的碘元素。实验室提取
的途径如图所示:
(4)灼烧海带需要在_______(填仪器名称)中进行。
(5)向酸化的滤液中加过氧化氢溶液,写出该反应的离子方程式_______。
(6)反应结束后,再加入作萃取剂,振荡、静置,可以观察到
层呈_______色。