1、如图,设M是平行四边形ABCD边上任意一点,设△CMB的面积为S2, △CDM的面积为S, △AMD的面积为S1,则有( ).
A. S=S1+S2 B. S>S1+S2 C. S<S1+S2 D. 不能确定
2、下列交通标志中,轴对称图形的个数为( )
A.4个
B.3个
C.2个
D.1个
3、如图,长方形A的周长为a,面积为b,那么从正方形中剪去两个长方形A后得到的阴影部分的面积为( )
A.﹣2b
B.a2﹣2b
C.4a2﹣2b
D.(a+b)2﹣2b
4、如图,直线,直线
和
被
所截,
,
,
,则
的长为( )
A.
B.
C.
D.
5、某厂一月份生产产品150台,计划二、三月份共生产450台,设二、三月平均每月增长率为x,根据题意列出方程是( )
A. B.
C. D.
6、若x2+kx+25是一个完全平方式,则k =( )
A. 5 B. ±5 C. 10 D. ±10
7、下列各数在数轴上对应的点到原点的距离最近的是( )
A.﹣2
B.﹣1
C.2
D.3
8、对于反比例函数,下列说法不正确的是( )
A.点(﹣2,﹣1)在它的图象上
B.它的图象在第一、三象限
C.当x>0时,y随x的增大而增大
D.当x<0时,y随x的增大而减小
9、如图,等边的边长为3,点P为BC上一点,且
,点D为AC上一点,若
,则CD的长为( )
A.1
B.
C.
D.
10、下列说法不正确的是( )
A. 三角形的一个外角等于两个内角的和 B. 三角形具有稳定性
C. 四边形的内角和与外角和相等 D. 角是轴对称图形
11、如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边 于点E,且AE=3,则AB的长为______.
12、如图,在平面直角坐标系xOy中,一次函数的图象与x轴交于点A(-4,0),与反比例函数
在第一象限内的图象交于点C,连接CO,若
,则
的值是_________.
13、如图,把一个长方体纸盒展成一个平面图形,需要剪开___________条棱.
14、若是关于x的一元二次方程
的一个根,则代数式
的值为______.
15、计算:|﹣2﹣4|+()0=_____.
16、某人工养殖池塘共有草鱼5000条和其它鱼类若干条,几次随机打捞中共捕获鱼300条,其中草鱼150条,试估计池塘中共养殖鱼_______条.
17、先化简,再求值:,其中
.
18、解下列方程:
(1) ; (2)
;
(3) ; (4)
.
19、 解方程组:
20、数学老师布置了一道思考题,计算:.下面是两位同学的解法.
小华的解法:.
小明的解法:原式的倒数为:.
所以.
(1)请你判断: 同学的解答正确.
(2)请你运用上述两位同学中的正确解法计算:.
21、如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)请直接写出不等式kx+b>3x中x的范围.
(3)若点D在y轴上,且满足S△BCD=2S△BOC,求点D的坐标.
22、如图,△ABC、△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.
(1)若将△DEP的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G.求证:△PBG∽△FCP;
(2)若使△DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G.试问△PBG与△FCP还相似吗?为什么?
23、小明骑自行车去郊游,下图表示他离家的距离y(千米)与实际时间x(时)之间关系的函数图像,小明9点离开家,15点回家,根据这个图像,请你回答下列问题:
(1)小明到离家最远的地方需要_____小时;此时离家_____千米;
(2)小明第一次休息了_____小时;
(3)小明在外出过程中,何时离家25千米?(请直接写出答案).
24、如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:AB=AC.