1、下列说法中:①一组对边平行且一组对角相等的四边形是平行四边形;②平行四边形对角线的交点到一组对边的距离相等;③对角线互相垂直的四边形面积等于对角线乘积的一半;④一组对边平行,另一组对边相等的四边形是平行四边形;其中正确的个数为( )个.
A.1 B.2 C.3 D.4
2、下列说法中,正确的是( )
A.一组数据﹣2,﹣1,0,1,1,2的中位数是0
B.质检部门要了解一批灯泡的使用寿命,应当采用普查的调查方式
C.购买一张福利彩票中奖是一个确定事件
D.分别写有三个数字﹣1,﹣2,4的三张卡片(卡片的大小形状都相同),从中任意抽取两张,则卡片上的两数之积为正数的概率为
3、抛物线y=2x2+4x﹣3的顶点坐标是( )
A. (1,﹣5) B. (﹣1,﹣5) C. (﹣1,﹣4) D. (﹣2,﹣7)
4、如果关于x的分式方程有非负整数解,关于y的不等式组
有且只有3个整数解,则所有符合条件的m的和是( )
A.﹣3 B.﹣2 C.0 D.2
5、《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4.5 尺;将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头长为 x 尺,绳子长为 y 尺, 则可列方程组( )
A. B.
C.
D.
6、在这四个数中,最小的数是( )
A. B.
C.
D.
7、函数与
在同一平面直角坐标系中的大致图像是( )
A.
B.
C.
D.
8、将两个长方体如图放置,则所构成的几何体的左视图可能是 ( )
A.
B.
C.
D.
9、如图,直线,若
,
,则
的大小为( )
A. B.
C.
D.
10、如图所示的几何体,它的左视图正确的是( )
A.
B.
C.
D.
11、如图所示,矩形ABCD中,AB=12cm,AD=5cm,E是DC上一点(点E不与D、C重合)连接AE,以AE所在的直线为折痕,折叠纸片,点D的对应点为D′,点F为线段BC上一点,连接EF,以EF所在的直线为折痕折叠纸片,使点C的对应点C′落在直线ED′上,若CF=4时,DE=_____.
12、如图,中,
,
,
为
内部一点,且
,则当
时,
__________.
13、某企业利用太阳能发电,年发电量可达2840000度.2 840 000用科学记数法可表示为______.
14、如图,AB是⊙O的弦,⊙O的半径OC⊥AB于点D,若AB=6cmOD=4cm,则⊙O的半径为_________cm.
15、如图,在矩形中,连接
,以点
为圆心,
为半径画弧,交
于点
,已知
,
,则图中阴影部分的面积为_______.(结果保留
)
16、在△ABC中,∠C=90°,AC=3,BC=4,若将△ABC绕点B逆时针旋转90°后,点A的对应点为D,则AD的长为 .
17、(12分)如图,已知抛物线(
)的顶点坐标为(4,
),且与y轴交于点C(0,2),与x轴交于A、B两点(点A在点B的左边).
(1)求抛物线的解析式及A、B两点的坐标;
(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小,若存在,求AP+CP的最小值;若不存在,请说明理由;
(3)在以AB为直径的⊙M中,CE与⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.
18、一个不透明的袋子中装有2个红球,1个黄球,1个白球,这些球除颜色外无其他差别.
(1)从袋子中随机摸出1个球,不放回,再随机摸出1个球,求两次摸出的球都是红球的概率.
(2)从袋子中随机摸出1个球,摸出的是红球得6分,黄球得4分,白球得2分. 甲同学从袋子中随机摸出1个球,记下颜色后放回并摇匀,乙同学再随机摸出1个球.则甲,乙两位同学所得分数之和不低于10分的概率是____________.
19、如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
20、如图1,点为正
的
边上一点(
不与点
重合),点
分别在边
上,且
.
(1)求证:;
(2)设,
的面积为
,
的面积为
,求
(用含
的式子表示);
(3)如图2,若点为
边的中点,求证:
.
图1 图2
21、如图,在下列的正方形网格中,
的顶点A,B,C均在格点上,请仅用无刻度直尺按下列要求作图(保留作图痕迹).
(1)在图1中,在边上找一点P,连接
,使
;
(2)在图2中,在边上找一点Q,连接
,使
.
22、如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位得到⊙P1.
(1)画出⊙P1 , 并直接判断⊙P与⊙P1的位置关系.
(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A、B,求劣弧AB与弦AB围成的图形的面积.(结果保留π)
23、有四张背面完全相同的卡片,正面分别标有数字,
,2,3.把这四张卡片背面朝上放在桌上,随机抽取一张不放回,再从剩余的卡片中随机抽取一张.若将第一次抽取的卡片上的数字记为
,第二次抽取的卡片上的数字记为
,则点
落在反比例函数
的图象上的概率为______.
24、中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:
成绩x/分
| 频数
| 频率
|
50≤x<60
| 10
| 0.05
|
60≤x<70
| 20
| 0.10
|
70≤x<80
| 30
| b
|
80≤x<90
| a
| 0.30
|
90≤x≤100
| 80
| 0.40
|
请根据所给信息,解答下列问题:
(1)a=______,b=______;
(2)请补全频数分布直方图;
(3)这次比赛成绩的中位数会落在_____________分数段;
(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?