1、下列计算正确的是( )
A.﹣3
B.﹣|﹣2|=2
C.﹣23=﹣8
D.(﹣)
2、若是方程
的两个解,则
的值为( )
A.0
B.-2
C.-12
D.12
3、下列各数中,最小的是( )
A.-2
B.-0.1
C.0
D.|-1|
4、若,
,则
的值为( )
A.-1 B.7 C.6 D.5
5、若x,y均为正整数,且,则
的值为( )
A.4
B.5
C.4或5
D.无法确定
6、对于任意有理数a,下列结论一定成立的是( )
A.|-a|="a" B.(-a)2=a2
C.(-a)3=a3 D.(-a)n=an(n为正整数)
7、如图所示的是一个极受学生群体欢迎的三棱锥魔方,三棱锥的棱的条数为( )
A.3
B.4
C.5
D.6
8、已知等式3m=2n+5,则下列等式中不成立的是( )
A. 3m﹣5=2n B. 3m+1=2n+6 C. 3m+2=2n+2 D. 3m﹣10=2n﹣5
9、从方程中得出
与
的关系式为( )
A.
B.
C.
D.
10、下列说法:①如果,则
;②
;③若
,
,则
;④若
,则
;⑤若关于x的方程
只有一个解,则m的值为3.其中,正确命题的个数是( )
A.1 B.2 C.3 D.4
11、下列现象中,可以用“两点之间线段最短”来解释的是( )
A.利用圆规可以比较两条线段的大小
B.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上
C.把弯曲的公路改直,就能缩短路程
D.用两个钉子就可以把木条固定在墙上
12、 已知点A(m,n)在第二象限,则点B(2n-m,-n+m)在第( )象限.
A.一 B.二 C.三 D.四
13、已知方程2x﹣a=8的解是x=2,则a=_____.
14、若单项式3acx+2与﹣7ac2x﹣1是同类项,可以得到关于x的方程为____.
15、点、
在数轴上分别表示有理数
、
,
、
两点之间的距离表示为
,则在数轴上
、
两点之间的距离
.
所以式子的几何意义是数轴上表示
的点与表示2的点之间的距离.借助于数轴回答下列问题:
①数轴上表示2和5两点之间的距离是________,数轴上表示1和的两点之间的距离是________.
②数轴上表示和
的两点之间的距离表示为________.
③数轴上表示的点到表示1的点的距离与它到表示
的点的距离之和可表示为:
.则
的最小值是________.
④若,则
________
16、如图,已知∠AOC=90°,∠COB=α,OD平分∠AOB,则∠AOD的大小为______(度)
17、在,
,
,
,
,0.3232,
,0,
中,负无理数有 _____个.
18、有理数在a,b,c在数轴上的位置如图所示, 则-
=__________.
19、比较大小:________
(用“
”“
”或“
”表示).
20、一个数的15次幂是负数,那么这个数的2003次幂是__________
21、如图,四边形中,
,
平分
交
于
,
平分
交
于
.
求证:
22、已知: 互为相反数,
互为倒数,
是最小的正整数,求代数式
的值.
23、已知,求
的值.
24、已知-3是的平方根,
的立方根是3,求
的平方根.
25、、
两地果园分别有苹果
吨和
吨,C、D两地分别需要苹果
吨和
吨.已知从A地、B地到C地、D地的运价如下表:
| 到 | 到 |
从 | 每吨15元 | 每吨12元 |
从 | 每吨10元 | 每吨9元 |
(1)若从A地果园运到C地的苹果为10吨,则从地果园运到D地的苹果为 吨,从B地果园运到C地的苹果为 吨,从
地果园运到D地的苹果为 吨,总运输费用为 元.
(2)若从A地果园运到C地的苹果为吨,求从A地果园运到D地的苹果的吨数以及从
地果园将苹果运到D地的运输费用.
(3)在(2)的条件下,用含的式子表示出总运输费用.
26、某中学进行体育教学改革,同时开设篮球、排球、足球、体操课、学生可根据自己的爱好任选其一,体育老师根据七年级学生的报名情况进行了统计,并绘制了下面尚未完整的条形统计图和扇形统计图.请根据统计图解答下列问题:
(1)该校七年级共有多少名学生?
(2)将两个统计图补充完整;
(3)从统计图中你还能得到哪些信息?(写出两条即可)