得到
  • 汉语词
  • 汉语典q
当前位置 :

2024-2025学年(下)宿州八年级质量检测数学

考试时间: 90分钟 满分: 120
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共10题,共 50分)
  • 1、整数m满足m-1m,则m的值为(  )

    A. 1 B. 2 C. 3 D. 4

  • 2、如图,直线,等边的顶点C在直线b上,若,则的度数为(       

    A.100°

    B.110°

    C.120°

    D.130°

  • 3、抛物线的顶点坐标是 (  )

    A.(-1,4)   B.(1,3)   C.(-1,3)   D.(1,4)

     

  • 4、如图,在△ABC中,D是边AC上一点,连BD,给出下列条件:①∠ABD=ACB;AB2=AD•AC;AD•BC=AB•BD;AB•BC=AC•BD.其中单独能够判定△ABC∽△ADB的个数是(  

     

    A. ①②    B. ①②③    C. ①②④    D. ①②③④

  • 5、如图,圆内接正五边形ABCDE中,ADB=( ).

    A. 35°   B. 36°   C. 40°   D. 54°

  • 6、一组数据:12,3,4,5,11,这组数据的中位数为(       

    A.3

    B.4

    C.5

    D.11

  • 7、在直角坐标平面内,点A的坐标为,点B的坐标为,圆A的半径为2.下列说法中不正确的是(   

    A.当时,点B在圆A

    B.当时,点B在圆A

    C.当时,点B在圆A

    D.当时,点B在圆A

  • 8、学校的自动饮水机,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降.此时水温(℃)与通电时间成反比例关系.当水温降至20℃时,饮水机再自动加热,若水温在20℃时接通电源,水温y与通电时间x之间的关系如图所示,则下列说法中正确的是(       

    A.水温从20℃加热到100℃,需要

    B.水温下降过程中,yx的函数关系式是

    C.上午8点接通电源,可以保证当天9:30能喝到不超过40℃的水

    D.水温不低于30℃的时间为

  • 9、函数y=的自变量x的取值范围是(  )

    A. x=1   B. x≠1   C. x≥1   D. x≤1

     

  • 10、如图, ,在上, 是弧的中点, 的度数是(

    A. B. C. D.

二、填空题 (共6题,共 30分)
  • 11、如图,⊙O的直径BD=4,∠A=60°,则CD的长度为_________

     

  • 12、当x______时,分式有意义.

  • 13、如图,△ABC中,过重心G的直线平行于BC,且交边AB于点D,交边AC于点E,如果设==,用表示,那么=___

  • 14、如图,已知抛物线轴交于两点,顶点为,抛物线的对称轴在轴的右则,若,则的值是__________

  • 15、在一张比例尺为1:2000的学校平面图上操场的长度为4cm,则此操场的实际长度为

    ______________m.

  • 16、如果三角形的一个外角等于与它相邻的内角的4倍,等于与它不相邻的一个内角的2倍,则此三角形最小内角的度数是________

三、解答题 (共8题,共 40分)
  • 17、小聪和小明周末相约到泰兴银杏公园晨练,这个公园有三个入口,她们可随机选择一个入口进入公园,假设选择每个入口的可能性相同.

    (1)小聪进入泰兴银杏公园时,从入口处进入的概率为______;

    (2)用树状图或列表法,求她们两人选择不同入口进入泰兴银杏公园的概率.

  • 18、如图,在△ABC中,DBC边的中点,EF分别在AD及其延长线上,CE∥BF,连接BECF

    1)求证:△BDF≌△CDE

    2)若AB=AC,求证:四边形BFCE是菱形.

     

  • 19、已知抛物线=为任意实数)

    1)无论取何值,抛物线恒过两点________________

    2)当时,设抛物线在第一象限依次经过整数点(横、纵坐标均为整数的点)为.将抛物线沿直线平移,平移后的抛物线记为,抛物线经过点的顶点为,例如时,抛物线经过点顶点为

    抛物线的解析式为________;顶点坐标为________

    在抛物线上是否存在点,使得?若存在,求出点的坐标,并判断四边形的形状;若不存在,请说明理由.

    直接写出线段的长________

  • 20、一天晚上,小丽和小华在广场上散步,看见广场上有一路灯杆(如图),爱动脑筋的小丽和小华想利用投影知识来测量路灯杆的高度.请看下面的一段对话.

    小丽:小华,你站在点处,我量得你的影长4m;然后你再沿着直线走到点处,又量得6m,此时你的影长也是6m

    小华:昨天体检时,医生说我的身高是1.6m

    请你根据她们的对话及示意图,求出路灯杆的高度

  • 21、定义:对于某个函数y,若存在实数m,当其自变量时,其函数值,则称m为这个函数的三中值.在函数存在三中值时,该函数的最大三中值与最小三中值之差称为这个函数的三中横距.特别地当函数只有一个三中值时,其三中横距记为0.如下图中的函数有两个三中值0和1,那么它的三中横距等于1.

    (1)分别判断函数是否有三中值?若有,直接写出三中横距;

    (2)函数

    ①若其三中横距为0,求b的值;

    ②若,求其三中横距n的取值范围;

    (3)记函数)的图象为,将沿翻折后得到的函数图象记为,由两部分组成的图象所对应的函数记为,若函数的三中横距满足,求的取值范围.

  • 22、为了让师生更规范地操作教室里的一体机设备,学校信息中心制作了“教室一体机设备培训”视频,并在视频课时间进行播放.结束后为了解初一、初二各班一体机管理员对设备操作知识的掌握程度,信息中心对他们进行了相关的知识测试.现从初一、初二年级各随机抽取了15名一体机管理员的成绩,得分用x表示,共分成4组:ABCD,对得分进行整理分析,给出了下面部分信息:

    初一年级一体机管理员的测试成绩在C组中的数据为:81,85,88.

    初二年级一体机管理员的测试成绩:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100.

    成绩统计表如表:

    (注:极差为样本中最大数据与最小数据差)

    年级

    平均数

    中位数

    最高分

    众数

    极差

    初一

    88

    a

    98

    98

    32

    初二

    88

    88

    100

    b

    c

    (1)________,________,________;

    (2)通过以上数据分析,你认为哪个年级的一体机管理员对一体机设备操作的知识掌握更好?并说明理由.

    (3)若初一、初二两个年级共有120名一体机管理员,请估计初一和初二两个年级此次测试成绩达到90分及以上的一体机管理员一共约有多少人?

  • 23、如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.

    (1)求m,n的值并写出反比例函数的表达式;

    (2)连接AB,E是线段AB上一点,过点E作x轴的垂线,交反比例函数图象于点F,若EF=AD,求出点E的坐标.

  • 24、解不等式组:,并把解集在数轴上表示出来.

查看答案
下载试卷
得分 120
题数 24

类型 单元测试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
范文来(fanwenlai.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 范文来 fanwenlai.com 版权所有 滇ICP备2023002272号-32