1、一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是( )
A.24.0
B.62.8
C.74.2
D.113.0
2、计算正确的结果是( )
A.
B.
C.
D.
3、调查显示,“两会”期间,通过手机等移动端设备对“两会”相关话题的浏览量高达115 000 000次.将115 000 000 用科学记数法表示应为( )
A. 1.15×10 9 B. 11.5×10 7 C. 1.15×10 8 D. 1.15 8
4、矩形纸片中,
,将纸片对折,使顶点A与顶点C重合,得折痕
,将纸片展开铺平后再进行折叠,使顶点B与顶点D重合,得折痕
,展开铺平后如图所示.若折痕
与
较小的夹角记为
,则
( )
A.
B.
C.
D.
5、如图,一块直角三角板的30°角的顶点P落在⊙O上,两边分别交⊙O于A、B两点,若⊙O的直径为4,则弦AB长为( )
A.2
B.3
C.
D.
6、下面哪个图形绕旋转中心旋转60°能和原图形重合( )
A.正六边形 B.正方形 C.等边三角形 D.正八边形
7、一元二次方程的解是( )
A. 0 B. 4 C. 0或4 D. 0或﹣4
8、如图,在正方形中,
是
边上的一点,
,
,将正方形边
沿
折叠到
,延长
交
于
.连接
,现在有如下四个结论:①
;②
;③
∥
;④
; 其中结论正确的个数是( )
A.1 B.2
C.3 D.4
9、某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x,根据题意得方程为( )
A. 50=175 B. 50+50
=175
C. 50(1+x)+50=175 D. 50+50(1+x)+50
=175
10、若一个60°的角绕顶点旋转15°,则重叠部分的角的大小是( )
A.15° B.30° C.45° D.75°
11、如图,在平面直角坐标系中,直线y=﹣4x+4与x轴,y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线y=(k≠0)上.将正方形沿y轴向下方平移m个单位长度后,点C恰好落在该双曲线上,则m的值为__.
12、如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为____________.
13、如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;②线段BF的取值范围为3≤BF≤4;
③EC平分∠DCH;④当点H与点A重合时,EF=.
以上结论中,你认为正确的有______.(填序号)
14、武汉火神山医院的建筑面积为34000平方米,数据34000用科学计数法表示_________.
15、在Rt中,
,且
,
,则该三角形内切圆的周长是______.
16、如图所示,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是________
17、某企业投资100万元引进一条农产品加工线,若不计维修、保养费用,预计投产后每年可获利33万元,该生产线投资后,从第1年到第年的维修、保养费用累计为
(万元),且
,若第1年的维修、保养费用为2万元,第2年为4万元。
(1)求与
之间的关系式;
(2)投产后,这个企业在第几年就能收回投资?
18、如图,是
的直径,
为
的切线,切点为C,交
的延长线于点A,点F是
上的一点,且点C是弧
的中点,连接
并延长交
的延长线于点B.
(1)求证:;
(2)若,
,求⊙O的半径.
19、已知如图1,四边形是正方形,
分别在边
、
上,且
,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.
(1)在图l中,连接,为了证明结论“
”,小亮将
绕点
顺时针旋转
后解答了这个问题,请按小亮的思路写出证明过程;
(2)如图2,当绕点
旋转到图2位置时,试探究
与
、
之间有怎样的数量关系?
(3)如图3,如果四边形中,
,
,
,且
,
,
,求
的长.
20、鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市“24℃夏天的独特魅力”,市旅游局工作人员依据2016年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;
根据以上信息解答下列问题:
(1)2016年7月份,鄂尔多斯市共接待游客 万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是 ,并补全条形统计图;
(2)预计2017年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;
(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作a、b、c,请用树状图或列表法求他们选择去同一个景点的概率.
21、在 中, 点
是边
上一点, 连接
平分
, 将线段
绕点
逆时针旋转得线段
.
(1)如图 1, 在线段
上时, 若
, 求
的长;
(2)如图 2, 若 与点
重合, 点
分别为线段
上的点, 点
分别为
的中点,点
在
的延长线上, 且
, 求证:
;
(3)如图 3, 若射线 过
中点
, 将
沿
翻折到同一平面内得到
, 过
做
垂直于直线
, 交直线
于点
, 当
与
的乘积最大时, 请直接写出
的值.
22、如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;
(1)以O为位似中心,在点O的同侧作△A1B1C1,使得它与原三角形的位似比为1∶2;
(2)将△ABC绕点O顺时针旋转90°得到△A2B2C2,并求出点A旋转的路径的长.
23、今年春北方严重干旱,某社区人畜饮水紧张,每天需从社区外调运饮用水120吨,有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨,从两水厂运水到社区供水点的路程和运费如下表:
| 到社区供水点的路程(千米)
| 运费(元/吨·千米)
|
甲厂
| 20
| 12
|
乙厂
| 14
| 15
|
【1】若某天调运水的总运费为26700元,则从甲、乙两水厂各调运多少吨饮用水?
【2】设从甲厂调运饮用水吨,总运费为W元,试写出W关于与
的函数关系式,怎样安排调运方案才能使每天的总运费最省?
24、解方程:.