1、如图所示,光滑斜面上物体的重力mg分解为F1、F2两个力,下列说法中正确的是( )
A.F1是使物体下滑的力,F2是物体对斜面的压力
B.物体受到mg、FN、F1、F2四个力的作用
C.物体实际只受到F1作用
D.力FN、F1、F2三个力的作用效果与mg、FN两个力的作用效果相同
2、某音频发生器发出频率为的声音,这个频率已经超过了人耳所能听到频率范围的最高频率,人们采取下列哪种方式可以听到这个声音( )
A.快速靠近音频发生器
B.快速远离音频发生器
C.绕着音频发生器做圆周运动
D.和音频发生器同时相向运动
3、1831年10月,法拉第将一个由紫铜制成的圆盘置于蹄形磁极之间,发明了世界上第一台发电机——法拉第圆盘发电机,其原理图如图所示,圆盘绕水平的轴C在垂直于盘面的匀强磁场中以角速度转动,铜片D与圆盘的边缘接触,圆盘、导线和电阻R连接组成闭合回路,下列说法正确的是( )
A.圆盘转动过程中,电能转化为机械能
B.C处的电势比D处的电势高
C.通过R的电流方向为从B指向A
D.圆盘产生的电动势大小与角速度的大小无关
4、图甲为雪后学生上街铲雪的劳动图,图乙为铁锹铲雪的简化模型图,设该同学以大小为F=10N沿杆的方向斜向下推动铁锹,铁锹杆的质量可以忽略,铁锹和雪恰好一起在地面上做匀速直线运动。设铁锹与地面的摩擦因数μ=0.2,铁锹的质量m=2kg,铁锹杆与水平方向的夹角θ=37°。则铁锹上雪的质量为(sin37°=0.6,cos37°=0.8,重力加速度g取10m/s2)( )
A.1.4kg
B.2.0kg
C.2.6kg
D.3.4kg
5、如图所示,站在车上的人,用锤子连续敲打小车。初始时,人、车、锤子都静止。假设水平地面光滑,关于这一物理过程,下列说法中正确的是( )
A.人、车和锤子组成的系统动量不守恒
B.因为人、车和锤子组成的系统合外力不为零,所以机械能不守恒
C.连续敲打可使小车持续向右运动
D.人、车和锤子组成的系统在水平方向上动量不守恒
6、如图甲所示,在竖直放置的弹簧上放置一物块m,最开始对m施加竖直向下的力F使得弹簧压缩。在
时撤去F释放小物块,计算机通过小物块上的速度传感器描绘出它的
图线如图乙所示。其中
段为曲线,bc段为直线,倾斜直线Od是
时图线的切线。重力加速度为g,不计弹簧自身重力及空气阻力,则下列说法正确的是( )
A.弹簧在时刻恢复原长
B.
C.弹簧的劲度系数
D.小物块向上的最大位移为
7、一定质量的理想气体,从状态A经B、C变化到状态D的状态变化过程p-V图像如图所示,横坐标体积数量级为,纵坐标压强数量级为
,AB与横轴平行,BC与纵轴平行,ODC在同一直线上,已知A状态温度为400K,从A状态至B状态气体吸收了320J的热量,下列说法正确的是( )
A.A状态的内能大于C状态的内能
B.从B状态到C状态的过程中,器壁单位面积在单位时间内受到撞击的分子数增加
C.从A状态到B状态的过程中,气体内能增加了250J
D.D状态的温度为225K
8、如图所示,一光滑竖直管内有一轻弹簧,轻弹簧的下端固定在地面上,上端自由伸长,将一小球从轻弹簧上端恰好与弹簧接触处由静止释放,忽略空气阻力,小球做简谐运动,运动过程中通过A、B两点的加速度大小分别为、
(g为当地的重力加速度)。小球向下经过A点时开始计时,t时刻经过B点,该小球的简谐运动的周期不可能是( )
A.
B.
C.
D.
9、分子云中的致密气体和尘埃在引力作用下不断集聚逐渐形成恒星,恒星的演化会经历成年期(主序星)、中年期(红巨星、超巨星)、老年期——恒星最终的归宿与其质量有关,若质量为太阳质量的倍将坍缩成白矮星,质量为太阳质量的
倍将坍缩成中子星,质量更大的恒星将坍缩成黑洞。假设恒星坍缩前后可看成质量均匀分布的球体,质量不变,体积缩小,自转变快。已知逃逸速度为第一宇宙速度的
倍,中子星密度约为白矮星密度的
倍,白矮星半径约为中子星半径的
倍。根据万有引力理论,下列说法正确的是( )
A.恒星坍缩后的第一宇宙速度变大
B.中子星的逃逸速度小于白矮星的逃逸速度
C.同一恒星表面任意位置的重力加速度大小相同
D.恒星坍缩后表面两极处的重力加速度变小
10、如图所示,铝管竖直置于水平桌面上,小磁体从铝管正上方由静止开始下落,在磁体穿过铝管的过程中,磁体不与管壁接触且无翻转,不计空气阻力,下列说法正确的是( )
A.磁体做自由落体运动
B.磁体做加速度增大的加速运动
C.磁体可能一直做加速度减小的加速运动
D.磁体先做加速运动,最后做减速运动
11、实线为三条未知方向的电场线,从电场中的点以相同的速度飞出
、
两个带电粒子,
、
的运动轨迹如图中的虚线所示(
、
只受静电力作用),则( )
A.一定带正电,
一定带负电
B.静电力对做正功,对
做负功
C.的速度将减小,
的速度将增大
D.的加速度将减小,
的加速度将增大
12、两辆赛车A、B在两条平行的直车道上行驶,t=0时刻两车经过同一计时线,之后运动的v—t图像如图所示,则( )
A.在 0~10s,赛车 A 的位移和加速度都不断减小
B.在0~10s,两车间距离不断减小
C.在t=10s时刻,赛车B追上赛车A
D.在 t=20s时刻,赛车B追上赛车 A
13、2023年5月30日,搭载中国航天员景海鹏、朱杨柱和桂海潮的神舟十六号,在距离地球表面约的轨道上与空间站进行对接。而目前还处在工作状态的国际空间站也大约在距离地球表面
的轨道上运行。为什么都大约在
的轨道上呢?一种观点认为低于
(卡门线)不能满足微重力的实验条件,高于
受到来自太阳辐射的粒子伤害比较大,再加上安全和发射成本以及技术等因素,科学界普遍认为飞行高度设置在
附近是最为稳妥的。已知地球半径为
。下列相关说法中正确的是( )
A.宇宙飞船处在卡门线轨道和空间站轨道做匀速圆周运动的加速度大小之比约为1.1
B.航天员所受空间站的作用力大小等于地球的吸引力大小
C.若两个空间站在同一轨道上,则经过足够长的时间两个空间站会撞上
D.宇宙飞船在卡门线轨道上运行的动能小于在离地的轨道上运行的动能
14、如图所示,边长为1m的正方体空间图形ABCD—A1B1C1D1,其下表面在水平地面上,将可视为质点的小球从顶点A在∠BAD所在范围内(包括边界)分别沿不同的水平方向抛出,落点都在A1B1C1D1平面范围内(包括边界)。不计空气阻力,g取10m/s2则( )
A.小球落在B1点时,初速度为m/s,是抛出速度的最小值
B.小球落在C1点时,初速度为m/s,是抛出速度的最大值
C.落在B1D1线段上的小球,平抛时初速度的最小值与最大值之比是1∶2
D.落在B1D1线段上的小球,平抛时初速度的最小值与最大值之比是
15、12月26日10时8分,随着首发动车组G8738次列车从宜宾站缓缓驶出,标志着设计时速350公里的四川成都经自贡至宜宾高铁(下称:“成自宜高铁”)正式开通运营。图为长100m的G8738次列车匀加速通过长1000m的宾临港长江公铁大桥桥梁,列车刚上桥的速度为10m/s,完全离开桥梁的速度为12m/s。下列说法正确的是( )
A.研究高铁列车过桥运动时可以将列车视为质点
B.高铁上的乘客看见路轨后退的参考系是桥梁
C.高铁列车完全通过此桥梁的加速度大小为
D.高铁列车完全通过此桥梁的时间为10s
16、首先发现电流的磁效应现象和首先发现电磁感应现象的物理学家分别是( )
A.科拉顿和奥斯特
B.特斯拉和安培
C.安培和法拉第
D.奥斯特和法拉第
17、如图所示,质量为2 kg的物体,在水平拉力F=10 N作用下向右做匀加速直线运动,已知物体受到摩擦力大小为4 N,则物体的加速度大小为( )
A.2 m/s2
B.3 m/s2
C.5 m/s2
D.7 m/s2
18、如图所示,电荷量为q的点电荷与均匀带电薄板相距2d,点电荷到带电薄板的垂线通过板的几何中心。若图中A点的电场强度为0,静电力常量为k,则图中B点的电场强度为( )
A.
B.0
C.
D.
19、一个物体从某一高度做自由落体运动,已知它在第 1s 内的位移恰为它最后 1s 位移的三分之一(g取10m/s2)。则它开始下落时距地面的高度为( )
A.31.25m
B.11.25m
C.20m
D.15m
20、我国发射的“天和”核心舱距离地面的高度为h,运动周期为T,绕地球的运动可视为匀速圆周运动。已知万有引力常量为G,地球半径为R,根据以上信息可知( )
A.地球的质量
B.核心舱的质量
C.核心舱的向心加速度
D.核心舱的线速度
21、井深8m,井上支架高2m,在支架上用一根长3m的绳子系住一个重100N的物体.若以地面为参考平面,则物体的重力势能为___________;若以井底面为参考平面,则物体的重力势能为______。
22、如图所示,斜边长为L,倾角为θ的光滑绝缘斜面处于匀强电场中,一带电量为+q,质量为m的小球以初速度v0由斜面底端的A点开始沿斜面上滑,到达斜面顶端的速度仍为v0,那么A、B两点的电势差为是___________;匀强电场场强的最小值是___________。
23、如图所示是用涡流金属探测器探究地下金属物的示意图,当探测到地下的金属物时,______(选填“金属物”或“探头”)中产生涡流。
24、质量为2.0kg的物体做自由落体运动,下落1.0s时,物体的速度为________ m/s,动能为_______J。(g=10m/s2)
25、如图所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无滑动,大轮的半径为10cm,小轮半径为5cm,大轮上的一点S为OP中点,则P、Q、S三点的线速度大小之比为__________。当大轮上S点的线速度是1m/s时,大轮上P点的向心加速度为aP=________m/s2。
26、汽车从甲城以速度为v1沿直线一直行驶到乙城,紧接着又从乙城以速度v2沿直线返回到达甲、乙两城的中点的丙小镇。则汽车在这一全过程的平均速度为____________,方向为___________。
27、某小组探究加速度与力、质量的关系,实验装置如图1所示,其中槽码的质量用m表示,小车的质量用M表示。
(1)实验中以下做法正确的是__________。
A.平衡摩擦力时,小车应连上纸带,接通打点计时器电源
B.平衡摩擦力时,应将槽码用细绳通过定滑轮系在小车上
C.实验时,小车应在靠近滑轮处释放
D.调整滑轮的高度,使牵引小车的细绳与长木板平行
(2)从实验中挑选一条点迹清晰的纸带,每5个点取一个计数点,用刻度尺测量计数点间的距离如图2所示。所用交变电流的频率是50Hz。该小车的加速度a=__________m/s2。
(3)实验小组得到的a-F图线如图3所示,图线未过坐标原点的原因可能是__________;图线末端弯曲的原因是__________。
28、风洞实验室中可以产生水平向右的、大小可调节的风力,现将一套有小球的细直杆放入风洞实验室,小球孔径略大于细杆直径,杆足够长,如图所示,小球的质量为1kg,球与杆间的滑动摩擦因数为0.5(取g=10m/s2)
(1)当杆在水平方向上固定时(如图虚线所示),调节风力的大小,使风对小球的力大小恒为4N,求此时小球受到的摩擦力f1的大小?
(2)若调节细杆使杆与水平方向间夹角θ为并固定(如图实线所示),调节风力的大小,使风对小球的力大小恒为40N,求小球从静止出发在细杆上2秒内通过位移的大小?
(3)上题中,求小球在细杆上运动2秒的过程中,风力对小球做的功和2秒末风力的功率;
(4)当风力为零时调节细杆与水平方向之间的夹角θ(0<θ<),然后固定,使小球从杆的底端以速率v0沿杆上滑。试通过计算、分析,说明在不同的夹角θ情况下,小球在杆上可能的运动情况。
29、如图所示,质量为的滑块置于一倾角为37°的粗糙斜面上,用一平行斜面向上,大小为
的力
推滑块,滑块沿斜面以
的速度向上匀速运动,已知斜面始终静止且足够长,求:(
,
,
取
)
(1)斜面对滑块的摩擦力大小?
(2)滑块和斜面之间的动摩擦因数?
(3)若撤去力,再经
时滑块的速度大小?
30、如图所示,ABCD为竖直放在场强为E=104 V/m的水平匀强电场中的绝缘光滑轨道,其中轨道的BCD部分是半径为R的半圆形轨道,轨道的水平部分与其半圆相切,A为水平轨道上的一点,而且AB=R=0.4m,把一质量m=0.1kg、带电荷量q=+1×10﹣4 C的小球放在水平轨道的A点由静止开始释放,小球在轨道的内侧运动.(g取10m/s2)求:
(1)小球到达C点时的速度是多大?(用根式表示)
(2)小球到达C点时对轨道压力是多大?
(3)若让小球安全通过D点,开始释放点离B点至少多远?
31、气压式升降椅通过气缸上下运动来支配椅子升降,其简易结构如图所示,圆柱形气缸与椅面固定连接,总质量为,横截面积为
的柱状气动杆与底座固定连接,可自由移动的气缸与气动杆之间封闭一定质量的理想气体,稳定后测得封闭气体柱长度为
。设气缸气密性、导热性能良好,忽略摩擦力,已知大气压强为
,室内温度
,取
。若质量为
的人盘坐在椅面上,室内温度保持不变。求:
(1)稳定后椅面下降的高度;
(2)稳定后,室内气温缓慢升高至,此过程中封闭气体内能增加
,求封闭气体与外界交换的热量。
32、距离为的两根轨道
、
平行放置,
、
与水平面的夹角为30°,
、
为两段光滑绝缘圆弧轨道(长度可忽略),除
、
两段外其余部分均为金属,电阻可忽略不计,
、
均光滑、足够长且二者在同一水平面上,轨道的
端接一个电容为
的电容器,
端接一个电阻恒为
的小灯泡,
所在平面内的磁场方向垂直于平面向下,
右侧的水平内的磁场方向竖直向上,磁感应强度的大小均为
。长为
、质量为
、电阻不计的导体棒
从靠近
端的位置由静止开始沿轨道下滑,在
处与静止在此处的质量为
、电阻为
、长度为
的导体棒
发生弹性碰撞,碰撞后瞬间导体棒
被拿走时小灯泡刚好正常发光。
棒的初始位置离水平面的高度为
,导体棒与倾斜轨道间的动摩擦因数为
,重力加速度为
,导体棒在运动过程中始终与轨道垂直且接触良好。求:
(1)小灯泡的额定功率:
(2)导体棒在磁场中运动的距离及此过程中导体棒
上产生的焦耳热。