1、如图两个长方体如图放置,则该立方体图形的左视图是( )
A. B.
C.
D.
2、已知是分式方程
的解,则实数a的值为( )
A.3
B.
C.
D.
3、以下列各组数为边长的三角形中,能组成直角三角形的是( )
A. 3,4,6 B. 15,20,25 C. 5,12,15 D. 10,16,25
4、已知点(﹣1,y1),(2,y2),(3,y3)在二次函数y=x2﹣4x﹣5的图象上,则下列结论正确的是( )
A.y1>y2>y3 B.y1>y3>y2 C.y3>y1>y2 D.y2>y3>y1
5、已知,则代数式
的值为( )
A.0
B.1
C.
D.
6、点关于y轴对称的点的坐标为( )
A. B.
C.
D.
7、在平面直角坐标系中,有两条抛物线关于原点中心对称,且它们的顶点相距个单位长度,若其中一条抛物线的函数表达式为
,则
的值为( )
A.或
B.或
C.或
D.或
8、如图,矩形ABCD中,对角线AC、BD交于点O,如果OB=4,∠AOB=60°,那么矩形ABCD的面积等于( )
A.8 B.16 C.8 D.16
9、在同一平面直角坐标中,关于下列函数:①y=x+1;②y=2x+1;③y=2x-1;④y=-2x+1的图象,说法不正确的是( ).
A.②和③的图象相互平行
B.②的图象可由③的图象平移得到
C.①和④的图象关于y轴对称
D.③和④的图象关于x轴对称
10、定义:两点关于某条直线对称,则称这条直线为这两个点的“幸福直线”.若点,幸福直线是
,则点
关于这条幸福直线的对称点
的坐标,是( )
A.
B.
C.
D.
11、如图,一次函数与反比例函数
(
)的图象交于点
,过点
作
,交
轴于点
;作
,交反比例函数图象于点
;过点
作
交
轴于点
;再作
,交反比例函数图象于点
,依次进行下去,……,则点
的横坐标为_______.
12、如图,在正方形中,
,点
、
分别在边
、
上,沿
翻折,使点
的对应点
恰好落在
边的中点处,若点
的对应点为
,则线段
的长为________;若线段
的垂直平分线分别交
、
于点
、
,则
__________.
13、如图,,
,
,…,
都是等腰直角三角形,其中点
,
,…,
在
轴上,点
,
,…,
在直线
上,已知
,则
的长为______________.
14、方程的解是______.
15、函数中,自变量x取值范围是_____________.
16、如图,在中,
是
边上的中线,
,
.将
沿直线
翻折,点
落在平面上的
处,联结
交
于点
,那么
的值为______.
17、如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F点处,已知AD=10cm,BF=6cm.
(1)求DE的值;
(2)求图中阴影部分的面积.
18、如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B在小正方形的顶点上.
(1)在直线l上找一点C,使它到A,B两点的距离相等;
(2)在(1)的基础上画出△ABC关于直线l成轴对称的△A′B′C′;
(3)在直线l上找一点P(在答题纸上图中标出),使PA+PB的长最短,这个最短长度的平方值是 .
19、为了促进学生课后服务多样化,某校组织开展了第二课堂,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项)为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图:
(1)此次共调查了多少人?
(2)请将条形统计图补充完整;
(3)若该校有1200名学生,请估计喜欢其它类社团的学生有多少人?
20、如图,在平行四边形中,
平分
交边
于点E,
,交边
于点F.
(1)求证:四边形是菱形.
(2)连接,若
,
,
,则
的长为_________.
21、为了降低塑料袋﹣﹣“白色污染”对环境污染.学校组织了对使用购物袋的情况的调查,小明同学5月8日到站前市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力分别提供了0.1元,0.2元,0.3元三种质量不同的塑料袋,下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:
(1)这次调查的购物者总人数是 人;
(2)请补全条形统计图,并说明扇形统计图中0.2元部分所对应的圆心角是 度,0.3元部分所对应的圆心角是 度;
(3)若5月8日到该市场购物的人数有3000人次,则该市场应销售塑料购物袋多少个?
22、在平面直角坐标系中,已知A(1,2)、B(3,-4)、C(1,0)
(1)在坐标系中描出各点,并作出△;
(2)请在同一坐标系中作出△关于y轴对称的△A1B1C1,使点A、B、C的对应点分别为A1、B1、C1;
(3)延长B1C1,与线段BA的延长线交于点P,则△B1PB面积=__________°
23、如图,△ABC中,AB=AC,D为BC的中点,∠ACB的平分线交AD于点E,以AC上一点O为圆心的圆经过C、E两点,⊙O与AC的另一个交点为F.
(1)求证:AD是⊙O的切线;
(2)若BC=8,cos∠BCE=,求⊙O的半径长.
24、已知:BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.
(1)如图1,求证:四边形ADEF是平行四边形;
(2)如图2,若AB=AC,∠A=36°,不添加辅助线,请你直接写出与DE相等的所有线段(AF除外).