1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、已知A、B、C、D、E、F六种元素的原子序数依次递增,前四种元素为短周期元素。A位于元素周期表s区,电子层数与未成对电子数相等;B基态原子中电子占据三种能量不同的原子轨道,且每轨道中的电子总数相同;D原子核外成对电子数为未成对电子数的3倍;F位于第四周期d区,最高能级的原子轨道内只有2个未成对电子;E的一种氧化物具有磁性。
(1)E基态原子的价层电子排布式为__________________。第二周期基态原子未成对电子数与F相同且电负性最小的元素名称为____________。
(2)CD3- 的空间构型为_______________。
(3)A、B、D三元素组成的一种化合物X是家庭装修材料中常含有的一种有害气体,X分子中的中心原子采用_____________杂化。
(4)F(BD)n的中心原子价电子数与配体提供电子总数之和为18,则n=________。根据等电子原理,B、D 分子内σ键与π键的个数之比为______________。
(5)一种EF的合金晶体具有面心立方最密堆积的结构。在晶胞中,F位于顶点,E位于面心,该合金中EF的原子个数之比为_________________。若晶胞边长a pm,则合金密度为______________g·cm3(列式表达,不计算)。
3、以某含铜矿石[主要成分是FeCuSi3O13(OH)4,含少量SiO2、CaCO3]为原料制备CuSO4·5H2O的流程如下:
已知相关试剂成分和价格如下表所示:
请回答下列问题:
(1)含铜矿石粉碎的目的是_______。
(2)酸浸后的溶液中除了Cu2+外,还含有的金属阳离子是_______。
(3)固体1溶于NaOH溶液的离子方程式为__________。
(4)结合题中信息可知:所选用的试剂1的名称为_______;加入该试剂时,发生反应的离子方程式为_________。
(5)试剂2 可以选择下列物成中的______。滤渣2中一定含有的物质为______(填化学式)。
A. Cu B.CuO C.Cu(OH)2 D.Fe
(6)CuSO4·5H2O用于电解精炼铜时,导线中通过9.632×103C的电量,测得阳极溶解的铜为16.0g。而电解质溶液(原溶液为1 L)中恰好无CuSO4,则理论上阴极质量增加_____g,原电解液中CuSO4的浓度为__ 。已知一个电子的电量为1.6×10-19C)
4、现有下列10种物质:①Na2CO3 ②AlCl3 ③HCl ④NH4HCO3 ⑤C2H5OH ⑥Al ⑦食盐水 ⑧石墨 ⑨冰醋酸 ⑩二氧化碳
(1)上述物质中属于强电解质的是__;属于非电解质的是__;能导电的是__。(填序号)
(2)既能跟盐酸反应又能跟NaOH溶液反应的是__(填序号)。
5、研究人员将Cu与Cu2O的混合物ag,用足量的稀H2SO4充分反应后,剩余固体质量为bg。
已知:Cu2O+2H+═Cu+Cu2++H2O
(1)混合物中n(Cu2O)=________mol(用含a、b的最简式表示)
(2)若将ag混合物在空气中加热生成CuO,则m(CuO)=_______g(用含a、b的最简式表示)
6、铁及其化合物在工农业生产、环境保护等领域中有着重要的作用。
(1)硫酸铁铵[NH4Fe(SO4)2·12H2O]广泛用于城镇生活饮用水、工业循环水的净化处理等。写出硫酸铁铵溶液中离子浓度的大小顺序 。
(2)FeSO4/KMnO4工艺与单纯混凝剂[FeCl3、Fe2(SO4)3]相比,大大降低了污水处理后水的浑浊度,显著提高了对污水中有机物的去除率。二者的引入并未增加沉降后水中总铁和总锰浓度,反而使二者的浓度降低,原因是在此条件下(pH约为7)KMnO4可将水中Fe2+、Mn2+氧化为固相的+3价铁和+4价锰的化合物,进而通过沉淀、过滤等工艺将铁、锰除去。已知:Ksp(Fe(OH)3=4.0×10-38,则沉淀过滤后溶液中c(Fe3+)约为 mol·L-1。写出生成+4价固体锰化合物的反应的离子方程式 。
(3)新型纳米材料ZnFe2Ox,可用于除去工业废气中的某些氧化物。制取新材料和除去废气的转化关系如图:
用ZnFe2Ox除去SO2的过程中,氧化剂是 。(填化学式)
(4)工业上常采用如图所示电解装置,利用铁的化合物将气态废弃物中的硫化氢转化为可利用的硫。先通电电解,然后通入H2S时发生反应的离子方程式为:2[Fe(CN)6]3-+2CO+H2S=2[Fe(CN)6]4-+2HCO+S↓。电解时,阳极的电极反应式为 ;电解过程中阴极区溶液的pH (填“变大”、“变小”或“不变”)。
7、氢能是理想的清洁能源,资源丰富。以太阳能为热源分解 Fe3O4 ,经由热化学铁氧化合物循环分解水制H2 的过程如下:
(1)过程Ⅰ:
①将O2分离出去,目的是提高Fe3O4的 。
②平衡常数K 随温度变化的关系是 。
③在压强 p1下, Fe3O4的平衡转化率随温度变化的(Fe3O4) ~ T 曲线如图 1 所示。若将压强由p1增大到p2 ,在图1 中画出 p2 的
(Fe3O4) ~ T 曲线示意图。
(2)过程Ⅱ的化学方程式是 。
(3)其他条件不变时,过程Ⅱ在不同温度下, H2O的转化率随时间的变化(H2 O) ~ t曲线如图2 所示。比较温度T1 、T2 、T3的大小关系是 ,判断依据是 。
(4)科研人员研制出透氧膜(OTM) ,它允许电子、O2-同时透过,可实现水连续分解制H2。工作时,CO、H 2O分别在透氧膜的两侧反应。工作原理示意图如下:
H2O在 侧反应(填“ a ”或“ b ”),在该侧H2O释放出H2的反应式是 。
8、【化学---选修3:物质结构与性质】原子序数小于36的X、Y、Z、W四种元素,其中X是半径最小的元素,Y原子基态时最外层电子数是其内层电子总数的2倍,Z原子基态时2p原子轨道上有3个未成对的电子,W原子4s原子轨道上有1个电子,M能层为全充满的饱和结构。回答下列问题:
(1)W基态原子的价电子排布式____________;Y2X2分子中Y原子轨道的杂化类型为______。
(2)化合物ZX3的沸点比化合物YX4的高,其主要原因是_____________。
(3)元素Y的一种氧化物与元素Z的一种氧化物互为等电子体,元素Z的这种氧化物的分子式是____________。Y60用做比金属及其合金更为有效的新型吸氢材料,其分子结构为球形32面体,它是由60个Y原子以20个六元环和12个五元环连接而成的具有30个Y=Y键的足球状空心对称分子。则该分子中σ键和π键的个数比_____;36gY60最多可以吸收标准状况下的氢气_____L。
(4)元素W的一种氯化物晶体的晶胞结构如右图所示,该氯化物的化学式是___________,该晶体中W的配位数为___________。它可与浓盐酸发生非氧化还原反应,生成配合物HnWCl3,反应的化学方程式为_________。
9、钼酸钠晶体( Na2MoO4·2H2O)是一种无公害型冷却水系统的金属缓蚀剂。工业上利用钼精矿(主要成分是不溶于水的MoS2)制备钼酸钠的两种途径如图所示:
(1) NaClO的电子式是
(2) 写出焙烧时生成MoO3的化学方程式为
(3)途径I碱浸时发生反应的化学反应方程式为
(4)途径Ⅱ氧化时发生反应的离子方程式为
(5)分析纯的钼酸钠常用钼酸铵[(NH4)2MoO4]和氢氧化钠反应来制取,若将该反应产生的气体与途径I所产生的尾气一起通入水中,得到正盐的化学式是
(6)钼酸钠和月桂酰肌氨酸的混合液常作为碳素钢的缓蚀剂。常温下,碳素钢在三种不同介质中的腐蚀速率实验结果如下图:
①要使碳素钢的缓蚀效果最优,钼酸钠和月桂酰肌氨酸的浓度比应为 。
②当硫酸的浓度大于90%时,腐蚀速率几乎为零,原因是 。
③试分析随着盐酸和硫酸浓度的增大,碳素钢在两者中腐蚀速率产生明显差异的主要原因是 。
(7)锂和二硫化钼形成的二次电池的总反应为:xLi + nMoS2Lix(MoS2)n。则电池放电时的正极反应式是: 。
10、草酸铁铵[(NH4)3Fe(C2O4)3]是一种常用的金属着色剂,易溶于水,常温下其水溶液的pH介于4.0~5.0之间。某兴趣小组设计实验制备草酸铁铵并测其纯度。
(1)甲组设计由硝酸氧化葡萄糖制取草酸,其实验装置(夹持及加热装置略去)如图所示。
①仪器a的名称是________________。
②55~60℃下,装置A中生成H2C2O4,同时生成NO2和NO且物质的量之比为3:1,该反应的化学方程式为__________________________。
③装置B的作用是______________________;装置C中盛装的试剂是______________。
(2)乙组利用甲组提纯后的草酸溶液制备草酸铁铵。
将Fe2O3在搅拌条件下溶于热的草酸溶液;滴加氨水至__________,然后将溶液________、过滤、洗涤并干燥,制得草酸铁铵产品。
(3)丙组设计实验测定乙组产品的纯度。
准确称量5.000g产品配成100mL溶液,取10.00mL于锥形瓶中,加入足量0.1000mol·L-1稀硫酸酸化后,再用0.1000mol·L-1KMnO4标准溶液进行滴定,消耗KMnO4溶液的体积为12.00mL。
①滴定终点的现象是_______________________。
②滴定过程中发现褪色速率开始缓慢后迅速加快,其主要原因是____________________。
③产品中(NH4)3Fe(C2O4)3的质量分数为____________%。[已知:(NH4)3Fe(C2O4)3的摩尔质量为374g·mol-1]
11、过氧化钠是一种淡黄色固体,有漂白性,能与水、酸性氧化物和酸反应。
(1)一定条件下,m克的H2、CO的混合气体在足量的氧气中充分燃烧,产物与过量的过氧化钠完全反应,过氧化钠固体增重_____克。
(2)常温下,将14.0克的Na2O和Na2O2的混合物放入水中,得到400 mL pH=14的溶液,则产生的气体标准状况下体积为_______L。
(3)在200mLAl2(SO4)3和MgSO4的混合液中,加入一定量的Na2O2充分反应,至沉淀质量不再减少时,测得沉淀质量为5.8克。此时生成标准状况下气体体积为5.6 L。则原混合液中c (SO42-)=_______mol/L。
12、以钛铁矿(主要成分为FeTiO3,还含有MgO、CaO、SiO2等杂质)为原料合成锂离子电池的电极材料钛酸锂(Li4Ti5O12)和磷酸亚铁锂(LiFePO4)的工艺流程如图:
已知:“溶浸”后的溶液中含金属元素的离子主要包括Fe2+、Mg2+、Ca2+、;富铁液中铁元素主要以Fe2+形式存在;富钛渣中钛元素主要以
形式存在。
回答下列问题:
(1)“溶浸”时为加快浸取速率,可以采取的措施是_______(答1条即可);“溶浸”过程发生反应的离子方程式为______________。
(2)若在实验室模拟分离富钛渣和富铁液,则检验富钛渣洗涤干净的操作为______________。
(3)“沉铁”过程发生反应的离子方程式为______________。
(4)“溶钛”过程中Ti元素的浸出率与反应温度的关系如图所示,试分析40℃后Ti元素浸出率呈图像所示变化的原因:_____________________。
(5) FeTiO3的晶胞结构如图1所示,设该晶胞的边长为a nm,为阿伏加德罗常数的值。Ti的价电子排布式为______________,该晶体的密度
_______(填含a的计算式)g·cm
;FeTiO3的结构的另一种表示如图2(晶胞中未标出Ti、O原子),画出沿z轴向xy平面投影时氧原子在xy平面的位置:______________
。
13、铁镁合金储氢材料,晶胞结构如图所示,晶胞参数为apm,储氢后H原子以正八面体的配位模式有序分布在Fe原子的周围,H原子与Fe原子之间的最短距离为晶胞参数的1/4。
回答下列问题
(1)同周期中,第一电离能小于Mg的元素有_______种,基态Fe原子的价电子排布式为_______,Fe位于元素周期表中的_______区。
(2)储氢后晶体的化学式为_______,Mg原子占据Fe原子形成的_______空隙,两个H原子之间的最短距离为_______,该储氢材料中氢的密度ρ为_______(用含a的代数式表示)。
(3)(氨硼烷)也是具有潜力的化学储氢材料之一,
中
的键角_______
中
的键角(填>,<或=)。