1、如图,∠ACD是△ABC的外角,∠BAC=80°,∠ABC和∠ACD的平分线相交于点E,连接AE,则∠CAE的度数是( )
A.35°
B.40°
C.50°
D.55°
2、若关于x的方程没有实数根,则直线
必不经过( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
3、如图,在中,
,
,分别以
、
为圆心,大于
的长为半径画弧,两弧相交于点
、
.作直线
,交
于点
;同理作直线
交
于点
,若
,则
的长为( )
A.
B.
C.
D.
4、不考虑颜色,对如图的对称性表述,正确的是( )
A.轴对称图形
B.中心对称图形
C.既是轴对称图形又是中心对称图形
D.既不是轴对称图形又不是中心对称图形
5、两组数据如下图,设图(1)中数据的平均数为、方差为
,图(2)中数据的平均数为
、方差为
,则下列关系成立的是( ).
A.
B.
C.
D.
6、如图,直线l1∥l2,线段AB交l1,l2于D,B两点,过点A作AC⊥AB,交直线l1于点C,若∠1=15,则∠2=( )
A.95
B.105
C.115
D.125
7、如果a,b是两个不相等的实数,且满足,
,那么ab等于( )
A.2015 B.-2015 C.1 D.-1
8、如图,PA、PB、CD是⊙O的切线,切点分别是A、B、E,CD分别交PA、PB于C、D两点,若∠APB=60°,则∠COD的度数( )
A.50°
B.60°
C.70°
D.75°
9、下列运算,正确的是( )
A. B.
C.
D.
10、西峡猕猴桃,河南省西峡县特产,中国国家地理标志产品.种植户小王新摘了一批猕猴桃,这些猕猴桃的质量的平均数和方差分别是,
,小王从中选出质量大且均匀的猕猴桃作为一等品销售,一等品猕猴桃的质量的平均数和方差分别为
,
,则下列结论一定成立的是( )
A.
B.
C.
D.
11、计算:的结果是________________;
12、二元一次方程3x+2y=7的正整数解是_____.
13、如图,矩形的对角线交于点
,
,
平分
交
于点
,若
,则
的长度为______.
14、我们国家现在有3000000名乡村教师,他们是我国基础教育的脊梁,尤其是我们农村孩子成长的园丁.把数据3000000用科学记数法表示为________.
15、如图,点A是反比例函数y=图象在第一象限上的一点,连结AO并延长交图象的另一分支于点B,延长BA至点C,过点C作CD⊥x轴,垂足为D,交反比例函数图象于点E.若
,△BDC的面积为6,则k=_____.
16、如果某人沿坡度=4:3的斜坡前进50米后,他所在的位置比原来的位置升高了_______米.
17、如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).
(1)写出B点的坐标;
(2)当点P移动3秒时,求三角形OAP的面积;
(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间.
18、计算:
19、如图,BC是⊙O的直径,点A是⊙O上一点,点D是CB延长线上一点,连接AB,AC,AD,且∠DAB=∠C.
(1)求证:AD是⊙O的切线;
(2)若BD=OB=1,求(弧AB)的弧长.
20、如图所示,一次函数y=kx+b的图象与反比例函数y=的图象交于A(1,t+1),B(t-5,-1)两点.
(1)求一次函数和反比例函数的解析式;
(2)若点(c,p)和(n,q)是反比例函数y=图象上任意两点,且满足c=n+1时,求
的值.
(3)若点M(x1,y1)和N(x2,y2)在直线AB(不与A、B重合)上,过M、N两点分别作y轴的平行线交双曲线于E、F,已知x1<-3,0<x2<1,当x1x2=-3时,判断四边形NFEM的形状.并说明理由.
21、已知:如图,在平行四边形ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连结BE,DF.
(1)求证:OE=OF.
(2)当∠DOE等于 度时,四边形BFDE为菱形。(直接填写答案即可)
22、为鼓励大学生创业,政府制定了小型企业的优惠政策,许多小型企业应运而生.某市统计了该市2015年1﹣5月新注册小型企业的数量,并将结果绘制成如图两种不完整的统计图:
(1)某市2015年1﹣5月份新注册小型企业一共 家,请将折线统计图补充完整.
(2)该市2015年3月新注册小型企业中,只有2家是养殖企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营情况.请以列表或画树状图的方法求出所抽取的2家企业恰好都是养殖企业的概率.
23、如图,在△ABC中,∠ACB=90°,∠A=30°,BC=6cm,CD是中线.点P从点C出发以4cm/s速度沿折线CD﹣DB匀速运动,到点B停止运动.过点P作PQ⊥AC,垂足为点Q,以PQ为一边作矩形PQMN,且MQ=PQ.点M,C始终位于PQ的异侧,矩形PQMN与△ACD的重叠部分面积为S(cm2),点P的运动时间为t(s).
(1)当点N在边AB上时,t= s.
(2)求S与t之间的函数关系式.
(3)当矩形PQMN与△ACD的重叠部分为轴对称图形时,直接写出t的取值范围.
24、先化简,再求值:,其中