1、已知集合,
,则
( )
A.
B.
C.
D.
2、已知定义在上的函数
满足
,则不等式
的解集为( )
A.
B.
C.
D.
3、某市共有400所学校,现要用系统抽样的方法抽取20所学校作为样本,调查学生课外阅读的情况.把这400所学校编上1~400的号码,再从1~20中随机抽取一个号码,如果此时抽得的号码是6,则在编号为41到60的学校中,应抽取的学校的编号为( )
A.45
B.46
C.47
D.以上都不是
4、已知在中,点
在边
上,且
,点
在边
上,且,
则向量
( )
A.
B.
C.
D.
5、已知集合,若A中只有一个元素,则a=( )
A.0或
B.
C.
D.0或
6、圆与圆
的位置关系为( )
A.相交
B.内切
C.外切
D.相离
7、某商店决定在国庆期间举行特大优惠活动,凡消费达到一定数量以上者,可获得一次抽奖机会.抽奖工具是如图所示的圆形转盘,区域Ⅰ,Ⅱ,Ⅲ,Ⅳ的面积成公比为2的等比数列,指针箭头指在区域Ⅰ,Ⅱ,Ⅲ,Ⅳ时,分别表示中一等奖、二等奖、三等奖和不中奖,则一次抽奖中奖的概率是( )
A. B.
C.
D.
8、若函数
在R上可导,其导函数为
,且函数
的图象如图所示,则下列结论中一定成立的是( )
A. 函数 有极大值
,无极小值 B. 函数
有极小值
,无极大值
C. 函数 有极大值
和极小值
D. 函数
有极大值
和极小值
9、已知中,D,E分别为线段AB,BC上的点,直线AE,CD交于点P,且满足
,则
的值为( )
A.
B.
C.
D.
10、已知椭圆的两个焦点分别为
,上顶点为
,且
,则此椭圆长轴的长为( ).
A.
B.
C.
D.
11、已知,
,若
与
平行,则
的值为
A.
B.
C.19
D.-19
12、已知函数,则不等式
的解集为( )
A.
B.
C.
D.
13、已知、
分别是双曲线
的左右焦点,过
作垂直于x轴的直线交双曲线于A、B两点,若
,则双曲线的离心率的范围是( )
A.
B.
C.
D.
14、使式子有意义的x的取值范围是( )
A.
B.
C.
D.
15、图是我国从3月到11月每个月最后一天统计的新冠疫苗累计接种(单位:万剂次)情况,则下列判断不正确的是( )
A.六月份的新增接种剂次最多
B.7月份之后每月新增接种剂次逐渐减少
C.由图可估计到12月结束累计接种将超过26亿剂次
D.由图可以预计进入冬季之后新增接种人数会增加
16、已知,令
,
,
,那么
之间的大小关系为( )
A. B.
C.
D.
17、函数的图像大致为
A.
B.
C.
D.
18、椭圆的一个焦点坐标是( )
A. (0,2) B. (2,0) C. ( ,0) D. (0,
)
19、已知数列是等差数列,其前
项和为
,有下列四个命题:
甲:;乙:
;丙:
;丁:
.
如果只有一个是假命题,则该命题是( )
A.甲
B.乙
C.丙
D.丁
20、已知函数的一条对称轴为
,则函数
的对称轴不可能为( )
A. B.
C. D.
21、对于,有如下命题:①若
,则
为等腰三角形;②
,则
为直角三角形;③若
,则
为钝角三角形,其中正确命题的序号是__________________.
22、已知定点,若动点
满足方程
,则
的最小值为___________.
23、口袋中有形状和大小完全相同的五个球,编号分别为,
,
,
,
,若从中一次随机摸出两个球,则摸出的两个球的编号之和大于
的概率为__________.
24、9月19日,航天科技集团五院发布消息称,近日在法国巴黎召开的第73届国际宇航大会上,我国首次火星探测天问一号任务团队获得国际宇航联合会2022年度世界航天奖.为科普航天知识,某校组织学生参与航天知识竞答活动,某班8位同学成绩如下:7,6,8,9,8,7,10,m.若去掉m,该组数据的下四分位数保持不变,则整数m(1≤m≤10)的值可以是____________(写出一个满足条件的m值即可).
25、函数的图象在点
处的切线斜率为
,则
______.
26、已知,则
___________.
27、已知,其中
是实常数.
(1)若,求
的取值范围;
(2)若,求证:函数
的零点有且仅有一个;
(3)若,设函数
的反函数为
,若
是公差
的等差数列且均在函数
的值域中,求证:
.
28、如图,直三棱柱内接于高为的圆柱中,已知
,
,
,
为
的中点,求:
(1)圆柱的全面积和体积;
(2)求直线与平面
所成的角的大小.
29、函数的最小值为
.
(1)求;
(2)若,求a及此时
的最大值.
30、如图所示,已知在五棱锥中,底面
为凸五边形,
,
,
,
,F为
上的点,且
,平面
与底面
垂直.求证:
(1)平面
;
(2).
31、已知函数
(1)求函数的极值;
(2)若函数在
上的最小值为2,求它在该区间上的最大值.
32、如图,,定点
、
、
分别表示0、
、
.求:
(1)、
分别所表示的复数;
(2)对角线所表示的复数;
(3)点所对应的复数.