1、承担“嫦娥五号”中继通信任务的“鹊桥”中继卫星位于绕地月第二拉格朗日点的轨道(如图所示)。第二拉格朗日点是地月连线延长线上的一点,处于该位置上的卫星与月球同步绕地球公转。则下列说法正确的是( )
A.该卫星的向心力由地球的万有引力提供
B.该卫星的向心力由月球的万有引力提供
C.该卫星的线速度大于月球公转的线速度
D.该卫星的加速度小于月球公转的加速度
2、某运送货物的中欧班列由30节质量相等的车厢组成,在车头牵引下,列车沿平直轨道匀加速行驶时,第2节车厢对第3节车厢的牵引力为F。若每节车厢所受阻力均相等,则倒数第3节车厢对倒数第2节车厢的牵引力为( )
A.
B.
C.
D.
3、大自然的植物多数是靠动物或鸟类帮忙传播种子,但也有一些植物会像愤怒的小鸟一样弹射的自己种子、自己播种,比如沙盒树。沙盒树的果实在成熟后会炸开,据说会发出类似手枪的响声,种子在十分之一秒时间内能以180公里的时速激射四周,宛如天然暗器一样。则沙盒树种子的加速度大小约为( )
A.
B.
C.
D.
4、在如图所示的电路中,E为电源,其内阻为r,L为小灯泡(其灯丝电阻可视为不变),R1、R2为定值电阻,R3为光敏电阻,其阻值大小随所受照射光强度的增大而减小,V为理想电压表。若将照射R3的光的强度减弱,则( )
A.小灯泡消耗的功率变小
B.电压表的示数变大
C.通过R2的电流变小
D.灯泡L变亮
5、某区域的电场线分布如图所示,其中M、N两点的电场强度( )
A.
B.
C.方向相同
D.方向相反
6、如图,通有恒定电流的固定长直导线附近有一圆形线圈,直导线与线圈置于同一光滑水平面内。若减小直导线中的电流强度,线圈将( )
A.产生逆时针方向的电流,有扩张的趋势
B.产生逆时针方向的电流,远离直导线
C.产生顺时针方向的电流,有收缩的趋势
D.产生顺时针方向的电流,靠近直导线
7、现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流表及开关按图所示连接,在保持开关闭合、线圈A放在线圈B中的情况下.某同学发现当他将滑动变阻器的滑片P向左加速滑动时,电流表指针向右偏转。由此可以推断( )
A.线圈A向上移动或滑动变阻器的滑片P向右加速滑动,都能引起电流表指针向左偏转
B.线圈A向上移动或断开开关,都能引起电流表指针向右偏转
C.滑动变阻器的滑片P匀速向左或匀速向右滑动,都能使电流表指针静止在中央
D.因为线圈A、线圈B的绕线方向未知,所以无法判断电流表指针偏转的方向
8、在国际单位制(SI)中,“电势”用基本单位可以表示为( )
A.
B.
C.
D.
9、《天工开物》记录的测量拉弓所需力量的方法如图所示。弦系在弓上a、b两点,并挂在光滑秤钩上,弓的下端系上重物。秤杆水平平衡时,挂秤砣处的刻度值为M(此时秤钩对弦的拉力大小为),秤钩两侧弦的夹角为
。则弦对a点的拉力大小为( )
A.
B.
C.
D.
10、如图所示,矩形线圈与磁场垂直,且一半在匀强磁场内,一半在匀强磁场外,下述过程中使线圈产生感应电流的是( )
A.以bc为轴转动45°
B.以ad为轴转动45°
C.线圈向下平移
D.线圈向上平移
11、火车站的旅客拉着行李箱出站,手臂的拉力大小为F,与水平方向的夹角为θ. 若将F沿水平和竖直方向分解,则其竖直方向的分力为
A.Fsinθ
B.Fcosθ
C.
D.
12、某款“眼疾手快”玩具可用来锻炼人的反应能力与手眼协调能力。如图所示,该玩具的圆棒长度L=0.25m,游戏者将手放在圆棒的正下方,手(视为质点)离圆棒下端的距离h=1.25m,不计空气阻力,取重力加速度大小,
,圆棒由静止释放的时刻为0时刻,游戏者能抓住圆棒的时刻可能是( )
A.0.6s
B.0.54s
C.0.48s
D.0.45s
13、猎豹起跑时加速度的大小可达8m/s2。一只质量为50kg的猎豹以该加速度起跑瞬间,所受外力的合力大小为( )
A.100N
B.200N
C.400N
D.600N
14、一汽车在平直的公路上以20m/s的速度匀速行驶,发现前面有情况需紧急刹车,刹车后的运动过程可视为匀减速直线运动,刹车过程的加速度大小为 则汽车( )
A.刹车后 6s内的位移大小为 50m
B.刹车后6s末的速度大小为 4m/s
C.刹车后第2s 内的平均速度大小为 12m/s
D.刹车后第1s 内和最后1s内的位移大小之比为 10:1
15、“胶囊高铁”利用磁悬浮技术将列车“漂浮”在真空管道中,由于没有摩擦,其运行速度最高可达到5000km/h。工程人员对“胶囊高铁”在A城到B城的一个路段进行了测试,行驶了120千米,用时6分钟。以下说法正确的是( )
A.5000km/h是平均速度
B.120千米是路程
C.6分钟是时刻
D.该段测试的平均速度一定是1200km/h
16、如图所示,在一与匀强电场平行的平面内建立平面坐标系,在
轴和
轴上分别有A点和B点,
,
,C为AB的中点,A、B两点的电势分别为
、
,原点O的电势为8V,下列说法正确的是( )
A.点的电势为
B.为匀强电场的一条电场线,且电场方向由
点指向
点
C.将一电子从B点移动到A点,电子克服电场力做的功为
D.匀强电场的电场强度的大小为
17、某品牌汽车在测试场进行直线行驶性能测试,测试车内所装位移传感器记录的数据经简化处理后得到位移随时间
的变化关系如图所示。关于该测试车的说法正确的是( )
A.第内汽车的加速度为0
B.第末汽车运动方向发生改变
C.内汽车的位移越来越大
D.末汽车回到出发点
18、某矿井中的升降机由井底上升到井口过程中的v-t图像如图所示,根据图像下列判断正确的是( )
A.2s末升降机的速度达到最大
B.2~4s升降机静止
C.1~2s升降机的速度变化比4~5s的速度变化大
D.1~2s升降机的速度变化比4~5s的速度变化快
19、下列物理学史材料中,描述正确的是( )
A.卡文迪什通过扭秤实验测量出静电引力常量的数值
B.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律
C.法拉第确定了计算单摆周期的公式
D.安培通过实验测定了元电荷的数值
20、如图所示,滑翔伞是一批热爱跳伞、滑翔翼的飞行人员发明的一种飞行器。现有一滑翔伞沿直线朝斜向下方向做匀加速直线运动。若滑翔伞和飞行人员受到的总重力为G,空气对滑翔伞和飞行人员的作用力为F,则此过程中飞行人员和滑翔伞组成的系统的受力情况可能是( )
A.
B.
C.
D.
21、铝的逸出功为W0=6.72×10﹣19J,用波长λ=200nm的光照射不带电的铝箔,发生光电效应,此时铝箔表面带 (选填“正”或“负”)电.若用铝箔制作光电管,普朗克常量h=6.63×10﹣34J•s,则它的遏止电压为 V (结果保留二位有效数字).
22、一列波沿x轴正方向传播的简谐波,在t=0时刻的波形图如图所示,已知这列波在P出现两次波峰的最短时间是0.4s,根据以上可知:
(1)这列波的波速是____m/s;
(2)再经过___s质点R才能第一次到达波峰;
(3)这段时间里R通过的路程为___cm。
23、图中ae为珠港澳大桥上四段110 m的等跨钢箱连续梁桥,若汽车从a点由静止开始做匀加速直线运动,通过ab段的时间为t,则通过ce段的时间为_______________。
24、有一条竖直悬挂起来的长为4.2m的细杆AB,在杆的正下方离B端0.8m的地方有一个水平放置的圆环C,若让杆自由下落, 杆从下落开始,下端B到达圆环所经历的时间为__________s;AB杆通过圆环的过程中所用时间为__________s
25、地球同步卫星到地心的距离r可用质量M、地球自转周期T与引力常量G表示为r= _____________ .
26、不可能事件:在一定条件下______出现的事件。
27、用如图所示的实验装置可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系,地面水平,图中O点是小球抛出点在地面上的垂直投影,实验时,用天平测量两个小球的质量m1、m2,先让入射球1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP,然后,把被碰小球2静置于轨道的水平部分,再将入射球1从斜轨S位置静止释放,与小球2相撞,并多次重复,分别找到球1、球2相碰后平均落地点的位置M、N,测量平抛射程OM、ON。
①关于本实验下列说法正确的是__________.
A.入射球1的质量应比被碰小球2质量大
B.小球与斜槽间的摩擦对实验有影响
C.入射球1必须从同一高度释放
D.两小球的半径可以不同
②若两球相碰前后的动量守恒,其表达式可表示为_______________(用题中测量的量表示)
③若两个小球质量均未知,只知道m1>m2,则只需验证表达式_________成立,可证明发生的碰撞是弹性碰撞。(用题中测量的量表示)
28、路程和位移的计算方法相同吗?
29、如图所示,一质量为m、电量为+q粒子,由静止经电压U加速后,从O点垂直场强方向射入有理想边界MN的匀强电场后经过P点,OP连线与粒子射入电场时速度方向之间的夹角为,OP两点间的距离为L,不计粒子重力.求:
(1)粒子到达O点时的速度大小;
(2)粒子从O点运动到P点的时间;
(3)匀强电场的电场强度大小.
30、如图所示,宽度为L=0.5m的光滑导轨固定在水平地面上,水平部分足够长,光滑倾斜部分与水平面的夹角为,两部分在PQ处平滑连接。导轨水平部分MN右侧区域有竖直方向的匀强磁场;倾斜部分有与导轨所在斜面垂直的匀强磁场(图中均未画出),两处磁场的磁感应强度大小都为B=2T,导体棒ab和cd的质量都为m=0.2kg,电阻阻值都为r=
。现使cd静止在距PQ位置x0=4m处,将ab自高度h=1m处由静止释放,必到达PQ之前已达到匀速运动状态。ab到达PQ时释放cd,之后经过一段时间,加速运动至磁场左边界MN处时,其加速度恰好减小为零,又经过一段时间,ab的速度减小为零。已知重力加速度g=10m/s2,导体棒经过PQ处的能量损失忽略不计,导轨电阻不计,求:
(1)整个过程回路产生的焦耳热;
(2)cd棒离开磁场后,ab棒运动的距离;
(3)ab棒速度减为0时与MN的距离。
31、两足够长且不计电阻的光滑金属轨道如图甲所示放置,间距为d=0.5m,在左端弧形轨道部分高h=1.8m处放置一金属杆a,弧形轨道与平直轨道的连接处光滑无摩擦,在平直轨道右端放置另一金属杆b,杆a、b的电阻分别为Ra= 3Ω、Rb=6Ω,在平直轨道区域有竖直向上的匀强磁场,磁感应强度B=4T。现杆b以初速度大小v0=6m/s开始向左滑动,同时由静止释放杆a,杆a由静止滑到水平轨道的过程中,通过杆b的平均电流为0.5A;从a下滑到水平轨道时开始计时,a、b运动的速度一时间图像如图乙所示(以a运动方向为正方向),其中ma= 3kg,mb= 2kg,g取10m/s2,求∶
(1)杆a在弧形轨道上运动的时间;
(2)杆a在水平轨道上运动过程中通过其截面的电荷量;
(3)在整个运动过程中杆a产生的焦耳热。
32、使一定质量的理想气体按图中箭头所示的顺序变化,图中BC段是以纵轴和横轴为渐近线的双曲线。
(1)已知气体在状态A的温度TA=300K,求气体在状态B、C和D的温度各是多少?
(2)将上述状态变化过程在图中画成用体积V和温度T表示的图线(图中要标明A、B、C、D四点,并且要画箭头表示变化的方向)。说明每段图线各表示什么过程。