1、我国“28nm”和“14nm”芯片的发展攻克了许多技术难题,其中“28nm”“14nm”表示芯片内单个晶体管的栅极宽度,如图甲所示为芯片内单个晶体管的示意图,下列说法正确的是( )
A.在形状相同的芯片内,“28nm”工艺要比“14nm”工艺集成的晶体管数量少
B.一宽度大于28nm的平行紫光照射宽度为28nm的缝隙后,紫光的宽度变为28nm
C.用相同材料制成的如图乙所示的方形导体,保持d不变,L减小,导体的电阻减小
D.波长为14nm的电磁波,可以用于城市电视、广播等信号的无线远距离传输
2、为了消杀新冠病毒,防控重点场所使用一种人体感应紫外线灯。这种灯装有红外线感应开关,人来灯灭,人走灯亮,为人民的健康保驾护航。下列说法正确的是( )
A.红外线和紫外线都是电磁波
B.紫外线能消杀病毒是因为紫外线波长长
C.红外线的波长比无线电波长
D.只有热的物体才能辐射红外线
3、在如图所示的电路中,小量程电流表G的内阻Rg=100Ω,满偏电流Ig=1mA,R1=900Ω,R2=Ω。下列说法正确的是( )
A.当S1和S2均断开时,改装成的表是电流表
B.当S1和S2均断开时,改装成的是量程为10V的电压表
C.当S1和S2均闭合时,改装成的表是电压表
D.当S1和S2均闭合时,改装成的是量程为1A的电流表
4、对于弹簧振子的回复力和位移的关系,下列图中正确的是( )
A.
B.
C.
D.
5、如图所示为齿轮的传动示意图,大齿轮带动小齿轮转动,大、小齿轮的角速度大小分别为ω1、ω2,两齿轮边缘处的线速度大小分别为v1、v2,则( )
A.ω1<ω2,v1=v2
B.ω1>ω2,v1=v2
C.ω1=ω2,v1>v2
D.ω1=ω2,v1<v2
6、如图所示,一轻质晒衣架静置于水平地面上,水平横杆与四根相同的斜杆垂直,两斜杆夹角,一重为
的物体悬挂在横杆中点,则每根斜杆受到地面的( )
A.作用力为
B.作用力为
C.摩擦力为
D.摩擦力为
7、如图所示,物体运动的图像是抛物线的一部分,物体在
时刻的位置坐标为
,在
时刻的位置坐标为
,则物体在
时刻的速度大小为( )
A.
B.
C.
D.
8、将自行车轮胎接触水盆里的水面,转动轮胎得到如图所示图景。水滴a的速度方向水平向左,水滴b的速度方向竖直向上,设水滴离开轮胎后,不计水滴间的相互作用及空气阻力,且可视为质点。c点和d点为轮胎上与转轴O距离相等的两个质点。下列说法正确的是( )
A.水滴a的轨迹在a点的切线不一定水平
B.水滴b离开轮胎后将向上做匀速直线运动
C.点的线速度与d点的线速度相同
D.水滴a、b在空中运动时单位时间内速度变化量的大小相等
9、下列说法正确的是( )
A.在做双缝干涉实验时,常用激光光源,这主要是应用激光的亮度高的特性
B.“闻其声而不见其人”现象说明遇到同样障碍物时声波比可见光容易发生明显衍射
C.用标准平面来检查光学面的平整程度是利用光的偏振现象
D.玻尔理论不仅能解释氢的原子光谱,也能解释氦的原子光谱
10、如图所示,将长度为的牛顿管抽成真空后,快速倒置,则管中羽毛从顶端下落到管底的时间约为( )
A.
B.
C.
D.
11、如图,空间存在水平向右的匀强电场,电场强度大小,半径为R的圆环竖直固定。一质量为m、电荷量为q的带正电小球从轨道内侧最低点A以某一初速度v沿顺时针方向做圆周运动,小球恰好能通过圆弧上与圆心O等高的B点,重力加速度为g,则速度v大小为( )
A.
B.
C.
D.
12、如图所示,轻绳MN的两端固定在水平天花板上,物体m1通过另一段轻绳系在轻绳MN的某处,光滑轻滑轮跨在轻绳MN上,可通过其下边的一段轻绳与物体m2一起沿MN自由移动。系统静止时轻绳MN左端与水平方向的夹角为60°,右端与水平方向的夹角为30°。则物体m1与m2的质量之比为( )
A.1:1
B.1:2
C.
D.
13、如图所示,木板B放置在粗糙水平地面上,O为光滑铰链。轻杆一端与铰链O连接,另一端连接一质量为m的小球A。现将轻绳一端拴在小球A上,另一端通过光滑的定滑轮由力F牵引,定滑轮位于O的正上方,整个系统处于静止状态。现改变力F的大小使小球A和轻杆从图示位置缓慢运动到
正下方,木板始终保持静止,则在整个过程中( )
A.外力F逐渐变小
B.轻杆对小球的作用力大小变小
C.地面对木板的支持力逐渐变小
D.地面对木板的摩擦力逐渐变大
14、在子弹穿透力对比的测试中,实验者可以通过子弹射穿苹果的个数来比较不同手枪子弹的穿透力,其中左轮手枪的子弹穿透了36只被紧挨排列固定在一起的苹果后速度恰好减为0,子弹穿透36只苹果的总时间为t,已知子弹可以视为质点,子弹穿透苹果的过程受到的阻力不变,下列说法正确的是( )
A.子弹在前 时间内穿透了4只苹果
B.子弹穿透前 18个苹果所用时间为
C.子弹穿透第 l 只与最后l 只苹果所用的时间之比为6: l
D.子弹穿透第20 只苹果所用时间为
15、设地球的半径为R0,质量为m的卫星在距地面R0高处做匀速圆周运动,地面的重力加速度为g,则下列说法正确的是( )
A.卫星的角速度为
B.卫星的线速度为
C.卫星的加速度为
D.卫星的周期为
16、如图所示,图甲和图乙分别为磁流体发电机、质谱仪原理图,图丙和图丁分别为速度选择器、回旋加速器原理图,不计粒子重力,下列说法正确的是( )
A.图甲中,将一束等离子体喷入磁场,A板电势高
B.图乙中,两粒子以相同速度从P点进入磁场,分别打到A1、A2位置的粒子比荷可能相同
C.图丙中,相同粒子若能从左侧向右匀速通过速度选择器,也可以从右侧沿原直线匀速通过
D.图丁中,用磁场控制轨道、用电场进行加速
17、已知地球半径为R,万有引力常量为G,地球表面的重力加速度为g,将地球视为质量均匀分布的球体,忽略地球自转的影响,则地球质量等于( )
A.
B.
C.
D.
18、一质点做简谐振动的振动方程是cm,则( )
A.在0至0.02s内,速度与加速度方向始终相同
B.在0.02s时,质点具有沿x轴正方向的最大加速度
C.在0.035s时,质点的速度方向与加速度方向均沿x轴正方向
D.在0.04s时,回复力最大,速度方向沿x轴负方向
19、关于电势能,下列说法正确的是( )
A.电势能是标量
B.电场力做正功,电势能增加
C.电场力做负功,电势能减少
D.电荷电势越低的地方,电势能越多
20、某游客驾车时车载导航推荐的路线有三条,信息如图所示。若车沿着推荐路线由起点行驶到终点,则关于车运动的描述正确的是( )
A.推荐路线中的最短路线“46公里”指的是车的位移
B.选择不同路线抵达终点,车的位移不相同
C.选择不同路线抵达终点,车行驶的平均速度一定相同
D.无论沿着哪条路线行驶,车的运动均为变速运动
21、麦克斯韦的电磁场理论主要有两个基本观点,分别是______和______.
22、已知地球表面的自由落体加速度为,地球半径为
,则地球的“第一宇宙速度”是_____。若某个行星的半径是地球半径的
倍,质量是地球的
倍,则该行星表面的自由落体加速度是地球表面加速度的_____倍。
23、甲、乙两颗人造地球卫星围绕地球做匀速圆周运动,它们的质量之比m1:m2=1: 2,它们做圆周运动的轨道半径之比为r1:r2=1:2,则它们的向心力之比F1:F2=_______,角速度之比:
=_______.
24、体重500N的人站在电梯内,电梯上升时v—t图像如图所示,在下列几段时间内,人对电梯底板的压力分别为:
(1)1s ~ 2s内,FN1= _____________;
(2)5s ~ 8s内,FN2= _____________;
(3)15s ~ 20s内,FN3= _____________。
25、如图所示,电动势为2 V的电源跟一个阻值R=9 Ω的电阻接成闭合电路,理想电压表测得电源两端电压为1.8 V,则电源的内阻为________ Ω.
26、如图是在调整公路上用超声波测速仪测量车速的示意图。测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差,测出被测物体的速度。图乙中、
是测速仪发出的超声波,
、
分别是
、
由汽车反射回来的信号。设测速仪匀速扫描,
、
之间的时间间隔
,超声波在空气中传播的速度是
,若汽车是匀速行驶的,则根据图乙可知,图中每小格表示的时间是_____秒,汽车在接收到
、
两个信号之间的时间内前进的距离是_____米。
27、完成下列关于打点计时器的问题:
(1) 运动物体拉动穿过打点计时器的纸带,在纸带上打下一系列点迹,纸带上的点迹直接记录了_______。
A.物体运动的时间 B.物体的形状和质量
C.物体在不同时刻的速度 D.物体在不同时刻的加速度
(2)使用打点计时器测量瞬时速度时应注意______。
A.电火花打点计时器使用的电源是220 V的交变电源,电磁打点计时器使用的电源是6 V以下的直流电源
B.打点计时器只能连续工作较短时间,打点之后要立即关闭电源
C.在拉动纸带时,拉动的方向应与限位孔平行
D.无论使用电磁打点计时器还是电火花打点计时器,都应该把纸带穿过限位孔,再把套在轴上的复写纸片压在纸带的上面
(3)使用打点计时器测量小车瞬时速度时得到的一条纸带如图所示(实验中打点计时器所接低压交变电源的频率为50 Hz),从A点后开始每5个点取一个计数点,依照打点的先后顺序依次编为0、1、2、3、4、5、6,测得x1=5.18 cm,x2=4.40 cm,x3=3.62 cm,x4=2.78 cm,x5=2.00 cm,x6=1.22 cm。根据纸带上打的点判断该小车做________(“加速”还是“减速”)运动,打点计时器打计数点3时速度大小为________m/s,打计数点4时的速度为_____m/s,(结果保留两位有效数字)
28、苹果从树上由静止下落,从下落瞬间开始计时,经t=0.8s着地。不计空气阻力,重力加速度g取。求:
(1)苹果落地时速度的大小;
(2)苹果开始下落时离地的高度h。
29、如图所示为质谱仪的示意图.速度选择器部分的匀强电场的场强为E=1.2×105 V/m,匀强磁场的磁感强度为B1=0.6 T;偏转分离器的磁感应强度为B2=0.8 T.求:(已知质子质量为1.67×10-27kg)
(1)能通过速度选择器的粒子的速度大小;
(2)质子和氘核以相同速度进入偏转分离器后打在照相底片上的条纹之间的距离d.
30、如图所示,在平面坐标系xOy中,在x轴上方空间内充满匀强磁场Ⅰ,磁场方向垂直纸面向外,在第三象限内存在沿y轴正方向的匀强电场,一质量为m电荷量为q的带正电离子从x轴上的点射入电场,速度方向与x轴正方向夹角为45°,之后该离子从
点射入磁场Ⅰ,速度方向与x轴正方向夹角也为45°,速度大小为v,离子在磁场Ⅰ中的轨迹与y轴交于P点,最后从
点射出第一象限,不计离子重力。
(1)求第三象限内电场强度的大小E;
(2)求出P点的坐标;
(3)边长为d的立方体中有垂直于AA'C'C面的匀强磁场Ⅱ,立方体的ABCD面刚好落在坐标系xOy平面内的第四象限,A点与Q点重合,AD边沿x轴正方向,离子从Q点射出后在该立方体内发生偏转,且恰好通过C'点,设匀强磁场Ⅰ的磁感应强度为,匀强磁场Ⅱ的磁感应强度为
,求
与
的比值。
31、为了安全,中国航母舰载机“歼-15”通过滑跃式起飞方式起飞.滑跃起飞的原理有点像高山滑雪,主要靠甲板前端的上翘来帮助战斗机起飞,其示意图如图所示,飞机由静止开始先在一段水平距离为的水平跑道上运动,然后在长度为
的倾斜跑道上滑跑,直到起飞.已知飞机的质量
kg,其喷气发动机的推力大小恒为
,方向与速度方向相同,水平跑道与倾斜跑道末端的高度差
,飞机在水平跑道上和倾斜跑道上运动的过程中受到的平均阻力大小都为飞机重力的0.2倍,假设航母处于静止状态,飞机质量视为不变并可看成质点,倾斜跑道看作斜面,不计拐角处的影响,且飞机起飞的过程中没有出现任何故障.g取10m/s2.
(1) 求飞机在水平跑道上运动的末速度.
(2) 求飞机从开始运动到起飞经历的时间.
32、如图所示,A、B、C三点为一直角三角形的三个顶点,∠B=30°,现在A、B两点放置两点电荷qA、qB,测得C点场强的方向与AB平行(如图),则qA、qB带何种电荷,qA、qB的比值是多少?