1、某质点运动的速度—时间()图像如图所示,
和
内对应的图线为直线,则下列说法正确的是( )
A.内质点的速度方向与加速度方向始终相同
B.内质点的速度方向与加速度方向始终相同
C.内质点的速度方向发生了改变
D.内质点的加速度先增大后减小
2、2020年福州马拉松在12月20日6:00集结,马拉松全程42.195公里,半程马拉松21.0975公里,男子组全程马拉松冠军被尹顺金以2小时14分58秒的成绩获得,女子组全程马拉松冠军被杨花以2小时37分37秒的成绩获得,下列正确的是( )
A.12月20日6:00是指时间间隔
B.42.195公里是指路程
C.尹顺金到达终点的速度一定比杨花到达终点速度大
D.研究尹顺金马拉松全程时间时,不能将尹顺金看成一个质点
3、质量均匀的钢管,一端支在光滑的水平地面上,另一端被竖直绳悬挂着,如图所示。关于钢管受力下列说法正确的是( )
A.钢管受四个力作用
B.地面对钢管的弹力是因为钢管的形变产生的
C.地面对钢管的弹力垂直于钢管向上
D.绳子对钢管的弹力方向与钢管的形变方向相同
4、两节动车的额定功率分别为和
,在某平直铁轨上能达到的最大速度分别为
和
。现将它们编成动车组,设每节动车运行时受到的阻力在编组前后不变,则该动车组在此铁轨上能达到的最大速度为( )
A.
B.
C.
D.
5、电源、开关S、定值电阻R1、R2、光敏电阻R3和电容器连接成的电路,电容器的两平行板水平放置。当开关S闭合,无光照射光敏电阻R3时,一带电液滴恰好静止在电容器两板间的M点,当用强光照射光敏电阻R3时,光敏电阻的阻值变小,则( )
A.液滴向下运动
B.液滴向上运动
C.电容器所带电荷量减少
D.M点电势变低
6、如图所示,长为L=99cm一端封闭的玻璃管,开口端竖直向上,内有一段长为h=11cm的水银柱与管口平齐。已知大气压强为p0=75cmHg,在温度不变的条件下,最多还能向开口端内注入的水银柱的高度为( )
A.1cm
B.2cm
C.3cm
D.4cm
7、如图所示,三根长为L的通电导线A、B、C在空间构成等边三角形,电流的方向垂直纸面向里,电流大小均为I,其中通电导线A在C处产生的磁感应强度的大小均为,通电导线C位于水平面处于静止状态,则导线C受到的摩擦力等于( )
A.,水平向左
B.,水平向右
C.,水平向左
D.,水平向右
8、某同学为研究地铁8号线的运动情况,它用细线将一支圆珠笔悬挂在地铁的竖直扶手上,地铁启动时用手机拍摄了如图所示的照片,拍摄方向跟地铁前进方向垂直。已知当地重力加速度为g。下列说法正确的是( )
A.该地铁的速度方向向右
B.只需测出笔的质量,即可估算出地铁的加速度
C.该地铁的加速度方向向右
D.只需测出细绳与竖直扶手之间的夹角,即可估算出地铁的加速度
9、如图所示,矩形abcd置于匀强电场中,其中ab=cd=10cm,ad=bc=20cm,电场线与矩形所在平面平行。若a点电势为16V,b点电势为12V,则( )
A.场强大小一定为E=40V/m
B.dc间电势差一定为4V
C.bc间电势差一定为8V
D.场强的方向有可能由a指向d
10、科学家们总结了许多物理学的研究方法,如建立理想模型法、控制变量法、等效替代法、极限思维法等,下列说法正确的是( )
A.时的平均速度可看成瞬时速度,运用了理想模型法
B.加速度的定义式中用到了控制变量法
C.重心、合力等概念的建立都体现了等效替代的思想
D.伽利略研究力与运动关系时,利用了极限思维法
11、如图所示,实线表示某静电场的三条等差等势线,虚线是仅在电场力作用下某带负电粒子的运动轨迹,A、B、C、D是电场中的四个点。下列结论正确的是( )
A.粒子从A到D的过程中动能逐渐减小
B.粒子在A点的加速度大于在D点的加速度
C.粒子在A点时具有的电势能小于在D点时具有的电势能
D.若实线表示电场线,将该粒子从C点由静止释放,它可能一直沿实线运动到B点
12、一小型风扇额定功率为,额定电压为
,则下列说法正确的是( )
A.此风扇的内阻为
B.此风扇正常工作时消耗的电能全部用于对空气做功
C.此风扇正常工作时的额定电流为
D.此风扇正常工作10小时,消耗0.1度电
13、如图甲所示,两固定平行且光滑金属轨道MN、PQ与水平面的夹角θ=37°,M、P之间接电阻箱R,电阻箱的阻值范围为0~9.9Ω,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度大小为B=0.5T。质量为m的金属杆ab水平放置在轨道上,其接入电路的阻值为r。现从静止释放杆ab,测得最大速度为vmax。改变电阻箱的阻值R,得到vmax与R的关系如图乙所示。已知轨道间距为L=2m,重力加速度g=10m/s2,轨道足够长且电阻不计,sin37°=0.6,cos37°=0.8。则( )
A.金属杆滑动时回路中产生的感应电流的方向是abMpa
B.金属杆的质量m=0.5kg
C.金属杆接入电路的阻值r=2Ω
D.当R=2Ω时,杆ab匀速下滑过程中R两端的电压为8V
14、如图所示,闭合导线框从长直通电绝缘导线的右侧A处匀速拉到对称的左侧B处,导线框紧贴着直导线通过。导线框从A运动到B的过程,下列说法正确的是( )
A.磁通量先减小后增大
B.磁通量先增大后减小
C.感应电流方向为先逆时针后顺时针,再为逆时针
D.感应电流方向为先顺时针后逆时针,再为顺时针
15、如图所示,质量为0.5kg的小球A和质量为1kg的物块B用跨过光滑定滑轮的轻质细绳连接,物块B放在倾角为30°的固定斜面体C上。起初小球A静止在滑轮正下方,现在小球A上施加一水平向右的外力F,使滑轮右侧细绳缓慢逆时针转动60°,此过程中物块B始终静止,取重力加速度大小,下列说法正确的是( )
A.外力F先增大后减小
B.起初物块B受到4个力作用
C.物块B受到的静摩擦力不超过5N
D.物块B受到的静摩擦力先增大后减小
16、如图所示,等腰梯形ABCD区域内,存在垂直该平面向里的匀强磁场,已知磁感应强度,
,
,
。O为DC边上一点,
,O点处有一粒子源,能沿垂直AD边的方向发射速度大小不等的同种带电粒子,带电粒子的质量为
,电荷量为
,粒子重力不计。下列说法正确的是( )
A.从A点飞出的粒子速度大小为32m/s
B.AB边与CD边可飞出粒子的区域长度之比为1∶2
C.粒子在磁场中运动的最长时间为
D.BC边会有部分区域有粒子飞出
17、如图所示,将带正电的导体球C靠近不带电的导体。沿虚线将导体分成A、B两部分,这两部分所带电荷量为,下面判断正确的是( )
A.,A带负电
B.,A带正电
C.,A带负电
D.,A带正电
18、近日电磁弹射微重力实验装置启动试运行,该装置采用电磁弹射系统,在很短时间内将实验舱竖直向上加速到20m/s后释放。实验舱在上抛和下落回释放点过程中创造时长达4s的微重力环境,重力加速度g取10m/s2,下列说法正确的是( )
A.微重力环境是指实验舱受到的重力很小
B.实验舱上抛阶段处于超重状态,下落阶段处于失重状态
C.实验舱的释放点上方需要至少20m高的空间
D.实验舱在弹射阶段的加速度小于重力加速度
19、在水深超过200 m的深海,光线极少,能见度极低,有一种电鳗具有特殊的适应性,能通过自身发出的生物电获取食物、威胁敌害、保护自己.若该电鳗的头尾相当于两个电极,它在海水中产生的电场强度达到104 N/C,可击昏敌害.则身长50 cm的电鳗,在放电时产生的瞬间电压可达( )
A.50 V
B.500 V
C.5000 V
D.50000 V
20、物体以初速度竖直上抛,经3s到达最高点,空气阻力不计,g取10m/s2,则对上升过程,下列说法错误的是( )
A.物体上升的最大高度为45m
B.物体速度改变量的大小为30m/s,方向竖直向下
C.物体在第1s内、第2s内、第3s内的平均速度之比为3:2:1
D.物体在1s内、2s内、3s内的位移大小之比为5:8:9
21、如图所示,正方形线框边的中点和
边的中点连线
恰好位于匀强磁场的右边界上,已知磁感应强度
,方向如图,线框的边长
,电阻
。现让线框以连线
为轴,以角速度
逆时针(俯视)匀速转动,若从图示位置开始计时,则线框中电流瞬时值的表达式为
___________A;从图示位置转过
的过程中通过线框的电荷量为___________C。
22、如图所示,在带电量为Q的点电荷B的电场中,质量为m、带电量为q的负点电荷A仅在电场力作用下以速度v绕B沿顺时针方向做匀速圆周运动,则B带_____(选填“正”或“负”)电,电荷A做圆周运动的半径r=__________。(静电力常量为k)
23、匀强电场的方向平行于平面,平面内a、b、c三点的位置如图所示,三点的电势分别为10V、17V、26V。完成下列填空:
(1)坐标原点处的电势为___________V;
(2)电子从b点运动到c点,电场力做功为___________eV;
(3)电子在a点的电势能比在b点的高___________eV;
(4)电场强度的大小为___________V/cm。
24、如图所示,质量为m的匀质细绳,一端系在天花板上的A点,另一端系在竖直墙壁上的B点,平衡后最低点为C点。现测得AC段绳长是BC段绳长的n倍,且绳子B端的切线与墙壁的夹角为α。则绳子在C处弹力大小为 ,在A处的弹力大小为 (重力加速度为g)
25、已知某物质的摩尔质量和密度分别为µ和ρ,阿伏加德罗常数为NA,则该物质单位体积的分子数为_______,若这种物质的分子是一个挨着一个排列的,可将每个分子的形状视为立方体,则它的边长约为_______
26、如图所示是医院用于静脉滴注的示意图,倒置的输液瓶上方有一气室A,密封的瓶口处的软木塞上插有两根细管,其中a管与大气相通,b管为输液软管,中间又有一气室B,而其c端则通过针头接入人体静脉。
(1)若气室A、B中的压强分别为pA、pB,外界大气压强p0,则三个压强的大小顺序应为_______;
(2)在输液瓶悬挂高度与输液软管内径确定的情况下,药液滴注的速度是_______________(填“越滴越慢”、“越滴越快”或“恒定不变”)的。
27、同学为研究某电学元件(最大电压不超过2.5 V,最大电流不超过0.55 A)的伏安特性曲线,在实验室找到了下列实验器材:
A.电压表(量程3 V,内阻6 kΩ)
B.电压表(量程15 V,内阻30 kΩ)
C.电流表(量程0.6 A,内阻0.5 Ω)
D.电流表(量程3 A,内阻0.1 Ω)
E.滑动变阻器(阻值范围0~5 Ω,额定电流为0.6 A)
F.滑动变阻器(阻值范围0~1000Ω,额定电流为0.6 A)
G.直流电源(电动势E=3 V,内阻不计)
H.开关、导线若干.
该同学设计电路并进行实验,通过实验得到如下数据(I和U分别表示电学元件上的电流和电压).
I/A | 0 | 0.12 | 0.21 | 0.29 | 0.34 | 0.38 | 0.42 | 0.45 | 0.47 | 0.49 |
U/V | 0 | 0.20 | 0.40 | 0.60 | 0.80 | 1.00 | 1.20 | 1.40 | 1.60 | 1.80 |
(1)为了提高实验结果的准确程度,电流表选________________;电压表选________________;滑动变阻器选________________.(以上均填写器材代号)
(2)请在虚线框中画出实验电路图.
28、如图为一定质量的氦气(可视为理想气体)状态变化的V—T图像。已知氦气的质量为m,摩尔质量为M,其在状态A时的压强为P0。阿伏加德罗常数为NA。
(1)求上述氦气中所含氦分子的总数N 。
(2)求氦气在状态B时的压强PB 。
(3)B→C过程外界对氦气做功为W,则该过程中氦气是吸热还是放热?传递的热量为多少?
(4)若上述氦气全部液化后的体积为V,求一个氦分子的直径d 。
29、如图所示,将质量为的平台
连接在劲度系数
的弹簧上端,弹簧下端固定在地面上,形成竖直方向的弹簧振子,在
的上方放置质量也为
的物块
,使
、
一起上下振动,弹簧原长为
。
的厚度可忽略不计,重力加速度
取
。
(1)求平衡位置距地面的高度以及当振幅为时
对
最大压力的大小;
(2)若使在振动中始终与
接触,求振幅的最大值。
30、如图所示的匀强电场中,有a、b、c三点,ab=5 cm,bc=12 cm,其中ab沿电场线方向,bc和电场线方向成60°角,一个电荷量为q=4×10-8 C的正电荷从a点移到b点时静电力做功为W1=1.2×10-7 J,求:
(1)匀强电场的场强E;
(2)电荷从b移到c,静电力做功W2;
(3)a、c两点间的电势差Uac.
31、如图所示竖直平面内的直角坐标系xoy,x轴水平且上方有竖直向下的匀强电场,场强大小为E,在x轴下方有一圆形有界匀强磁场,与x轴相切于坐标原点,半径为R。已知质量为m、电量为q的粒子,在y轴上的(0,R)点无初速释放,粒子恰好经过磁场中(R,-R)点,粒子重力不计,求:
(1)磁场的磁感强度B;
(2)若将该粒子释放位置沿y=R直线向左移动一段距离L,无初速释放,当L为多大时粒子在磁场中运动的时间最长,最长时间多大;
(3)在(2)的情况下粒子回到电场后运动到最高点时的水平坐标值。
32、如图所示,足够长的平行金属导轨倾斜放置,导轨所在平面倾角 θ=37°, 导轨间距 L=1m,在水平虚线的上方有垂直于导轨平面向下的匀强磁场 B1,水平虚线下方有平行于导轨平面 向下的匀强磁场 B2,两磁场的磁感应强度大小均为 B=1T.。导体棒 ab、cd 垂直放置在导轨 上,开始时给两导体棒施加约束力使它们静止在斜面上,现给 ab 棒施加沿斜面向上的拉 力 F,同时撤去对两导体棒的约束力,使 ab 沿斜面向上以 a=1m/s2 的加速度做匀加速直线 运动,cd 棒沿斜面向下运动,运动过程中导体棒始终与导轨垂直并接触良好。已知导体棒 与导轨间的动摩擦因数均为 μ=0.5,导体棒的质量均为 m=0.1kg,两导体棒组成的回路总电 阻为 R=2Ω,导轨的电阻不计,最大静摩擦力等于滑动摩擦力,g=10m/s2,sin37° =0.6 ; cos37° =0.8 ,求:
(1)当 cd 棒向下运动的速度达到最大时,ab 棒受到的拉力大小;
(2)当回路中的瞬时电功率为 2W 时,在此过程中,通过 ab 棒横截面的电量;
(3)当 cd 棒速度减为零时,回路中的电流大小。