1、特高压直流输电是国家重点能源工程。如图所示,两条平行导线、
,其中a、b点连线与两导线垂直,O点为连线中点,导线长度看作无限长、忽略地磁场,两根导线通有同向的电流,大小分别为
、
,则( )
A.与
相互排斥
B.O点的磁感应强度方向与电流方向相同
C.若,则O点处的磁感应强度大小为零
D.若,则两导线所受安培力大小不相等
2、已知一物体从足够长斜面底端沿斜面匀减速上滑,上滑长度为L时,速度减为0,当物体的上滑速度是初速度的时,它沿斜面已上滑的距离是( )
A.
B.
C.
D.
3、如图所示是光滑、绝缘的水平桌面。在桌面上有一直角坐标系xOy,它的第一象限内有一过O点的虚线OP,虚线与x轴正方向间夹角θ=37°。虚线右下方到第四象限内有与虚线平行、电场强度的匀强电场。虚线上有一点K,OK=5m。两个质量均为m=0.02kg、电量均为
的带负电小球从K点以速度v=5m/s射入电场,如图,球1速度平行y轴,球2速度垂直虚线,则两小球运动过程中,下列说法不正确的是( )
A.任意相同时间内,两球速度变化相同
B.任意相同时间内,电场力对球1做的功小于对球2做的功
C.球1最小速度为4m/s
D.球2的运动轨迹只在第一象限
4、下列关于物理学发展历史的描述中,错误的是( )
A.英国物理学家汤姆孙发现电子,获得诺贝尔物理学奖
B.卢瑟福用α粒子轰击氮核发现了质子,第一次实现了原子核的人工转变,并通过该实验提出了原子核式结构模型
C.丹麦物理学家波尔最先得出氢原子能级表达式
D.约里奥一居里夫妇用α粒子轰击铝箔时,发现正电子和人工放射性同位素
5、2023年9月21日,“天宫课堂”第四课在中国空间站开讲,授课期间利用了我国的中继卫星系统进行信号传输。若空间站在近地轨道上做匀速圆周运动,中继卫星系统中某卫星是地球静止轨道卫星,其距地面高度约为空间站距地面高度的10倍。则下列说法正确的是( )
A.静止轨道卫星运行周期小于空间站运行周期
B.静止轨道卫星运行线速度小于空间站运行线速度
C.静止轨道卫星运行加速度大于空间站运行加速度
D.静止轨道卫星运行角速度大于空间站运行角速度
6、一根长为l、横截面积为S的金属棒,其材料的电阻率为ρ,棒内单位体积自由电子数为n,电子的电荷量为e。在棒两端加上恒定的电压时,棒内产生电流,自由电子定向运动的平均速率为v,下列说法错误的是( )
A.棒两端电压
B.通过棒的电流
C.棒的电阻为
D.棒的内部场强
7、图示电路中有a、b、c三根电阻丝,关于三根电阻丝的电阻值,有( )
A.长度最大的电阻丝b的阻值最大
B.横截面积最大的电阻丝c的阻值最大
C.若三根电阻丝的材料相同,则它们的阻值也相同
D.若三根电阻丝的材料相同,则长度最大、横截面积最小的电阻丝b的阻值最大
8、放射性同位素衰变的快慢有一定的规律,质量为的碳
发生
衰变,经过时间t后剩余碳14的质量为m,其
图线如图所示。下列说法正确的是( )
A.碳14放出的粒子来自核外电子
B.碳14的衰变方程为
C.碳14的半衰期为11460年
D.100个碳14原子经过11460年后还剩25个
9、某学习小组用如图所示的实验装置验证动量守恒定律,为了能成功完成实验,下列说法正确的是( )
A.两小球必须等大且m1<m2
B.斜槽轨道必须是光滑的
C.入射球每次必须在轨道的相同位置静止释放
D.必须测出高度H
10、在探究库仑力大小与哪些因素有关的实验中,小球A用绝缘细线悬挂起来,小球B固定在绝缘支架上,B球在悬点O的正下方,两球带电后平衡在如图所示位置。若经过一段时间,由于漏电,小球A的高度缓慢降低了一些,关于悬线对A球的拉力FT大小和两球间库仑力F大小,下列判断正确的是( )
A.FT变小,F变小
B.FT不变,F变小
C.FT变大,F不变
D.FT不变,F不变
11、某新能源汽车在一次测试中沿平直公路由静止开始加速,其加速度a不断减小,直至a = 0,则汽车在加速过程中( )
A.速度增加越来越慢,位移增加也越来越慢
B.速度增加越来越快,位移增加也越来越快
C.速度增加越来越慢,位移增加越来越快
D.速度增加越来越快,位移增加越来越慢
12、如图所示为某种机械装置,物块B放置在两固定挡板中,物块B和木楔A的质量均为m,木楔倾角为30°,所有接触面均光滑。现用水平恒力F推动木楔A水平向左运动,物块B被顶起。则( )
A.物块B与左侧挡板间无挤压
B.当,物块B才会被顶起
C.若A向左匀速,B将被加速顶起
D.A运动的速度始终大于B上顶的速度
13、下列在高中物理实验室里测得的物理量,最符合实际的是( )
A.小球从实验台滑落到地面的速度为
B.小车通过细绳在重物拉动下加速度为
C.一个鸡蛋所受的重力大小约为
D.木块和玻璃板间的动摩擦因数为1.2
14、能量子假设是对经典物理学思想与观念的一次突破。“振动着的带电微粒的能量只能是某一最小能量值的整数倍”,作出这一大胆假设的科学家是( )
A.牛顿
B.普朗克
C.密立根
D.爱因斯坦
15、如图甲所示为“海影号”电磁推进实验舰艇,舰艇下部的大洞使海水前后贯通。舰艇沿海平面截面图如图乙所示,其与海水接触的两侧壁M和N分别连接舰艇内电源的正极和负极,使得M、N间海水内电流方向为M→N,此时加一定方向的磁场,可使得M、N间海水受到磁场力作用而被推出,舰艇因此向右前进,则( )
A.所加磁场的方向应为水平向右
B.所加磁场的方向应为垂直纸面向外
C.所加磁场的方向应为垂直纸面向里
D.互换电源正负极的同时把磁场变为反向,能实现舰艇减速
16、如图甲所示为探究电磁驱动的实验装置。某个铝笼置于U形磁铁的两个磁极间,铝笼可以绕支点自由转动,其截面图如图乙所示。开始时,铝笼和磁铁均静止,转动磁铁,会发现铝笼也会跟着发生转动,下列说法正确的是( )
A.铝笼是因为受到安培力而转动的
B.铝笼转动的速度的大小和方向与磁铁相同
C.磁铁从图乙位置开始转动时,铝笼截面中的感应电流的方向为a→d→c→b→a
D.当磁铁停止转动后,如果忽略空气阻力和摩擦阻力,铝笼将保持匀速转动
17、位于坐标原点处的波源发出一列沿x轴正方向传播的简谐横波。t = 0时波源开始振动,其位移y随时间t变化的关系式为,则
时的波形图为( )
A.
B..
C.
D.
18、在国际单位制中,为导出单位的是( )
A.N
B.m
C.kg
D.s
19、如图所示,带箭头的线表示某一电场的电场线。一带电粒子只在电场力作用下经B点飞向A点,轨迹如图中虚线所示,下列说法正确的是( )
A.粒子带正电
B.粒子在 B 点加速度大
C.粒子在 B 点动能大
D.粒子在B点的电势能较小
20、如图所示电路中,直流电源的内阻,定值电阻
、
,滑动变阻器的总电阻
。滑动变阻器的滑片
由
端滑到
端过程中,电压表始终未超出量程,则电压表的示数变化情况是( )
A.一直增大
B.一直减小
C.先减小后增大
D.先增大后减小
21、某理想气体在温度为27℃和压强为情况下,密度为11.3g/m3,则这气体的摩尔质量
_________,这是什么气体?_________。
22、如图所示电路,电源电压保持恒定,若滑动变阻器的滑片向右移动,则电流表的示数将_______,电压表的示数将_______。(均选填“变大”、“变小”或“不变”)
23、如图所示,开始时开关与a相连.当将开关与b相连后的瞬间,通过灵敏电流表的电流方向________(选填“向左”或“向右”),电容器的电容________(选填“变大”“变小”或“不变”)。
24、质点与几何点唯一的区别是质点具有一定的_______.一个物体能否看成质点,取决于所研究的问题的性质.在一些问题中,物体的大小、形状、和体积可以忽略不计,此时可以把物体看成________ .研究物体的转动和姿势、姿态时,________(填能或不能)把物体看成质点.
25、如图是在调整公路上用超声波测速仪测量车速的示意图。测速仪发出并接收超声波脉冲信号,根据发出和接收到的信号间的时间差,测出被测物体的速度。图乙中、
是测速仪发出的超声波,
、
分别是
、
由汽车反射回来的信号。设测速仪匀速扫描,
、
之间的时间间隔
,超声波在空气中传播的速度是
,若汽车是匀速行驶的,则根据图乙可知,图中每小格表示的时间是_____秒,汽车在接收到
、
两个信号之间的时间内前进的距离是_____米。
26、在实际生活中我们可以用滴水法测定当地的重力加速度.其具体做法如下:在水龙头的下方放一个金属盘,让水一滴一滴的往下滴,调整盘子和水龙头之间的高度,当听到金属盘响声的同时,恰好有一滴水离开水龙头.调整好之后就可以进行测量了.
(1)实验时应测出金属盘到水龙头的______ ,用H表示;
(2)用秒表测出从第1滴水离开水龙头到第n次听到响声所用的时间是t,从水龙头到金属盘之间还有一滴水,则相邻两滴水之间的时间间隔是______ .
(3)当地的重力加速度的表达式是g= ______ (用所测物理量表示)
27、某同学在实验室发现一张小石子平抛运动的频闪照片,照片背景为一堵贴近的竖直砖墙,如图所示。
记载信息有:
A.每块砖的长为3a,高为a。
B.当地的重力加速度为g。
该同学根据所学平抛运动的知识,可以求出频闪照片的拍摄频率f =________,小石子水平初速度 v0 =____________(用题设条件表示)。
28、 如图所示,竖直放置的两块足够长的平行金属板间存在匀强电场,在两极板间某位置用绝缘细线悬挂一质量=10g的带电小球,静止时细线跟竖直方向成θ=45°角,小球与右极板距离为
=20cm。
(1)若小球所带的电荷量=5.0×10-8C,则两极板间的电场强度大小为多少?
(2)若剪断细线,则小球做什么运动?需多长时间到达右极板?(g取10m/s2)
29、如图所示轨道由两个半圆轨道与一倾斜轨道构成,CDB处于同一竖直线上,CD为小圆直径,CB为大圆直径,两圆相切于C点。一质量为0.5 kg的物块被弹射器弹出进入光滑水平轨道AB后冲上两段圆弧轨道,且圆弧半径满足,物块进入水平轨道DE后,在E点有一振波器,能使物块以大小不变且与水平方向夹角为
的速度从E点飞出,物块飞出后落在倾斜角为53°的足够长的斜面EF上.已知轨道均光滑,所有轨道均处于同一竖直平面内,
,
,
,求:
(1)若物块在B点的速度为20m/s,求物块在B点对轨道的压力;
(2)若物块全程不脱离圆弧轨道,求物块在C点的最小速度;
(3)若物块在E点的速度为12m/s,求使物块与水平方向夹角为何值时物块在轨道EF上方飞行时间最长,最长时间是多少。
30、如图所示,在水平传送带上有两个质量分别为m1、m2的木块A和B,中间用一原长为L0,劲度系数为k的轻弹簧连接起来,木块与传送带间的动摩擦因数为µ。现用不可伸长的水平细绳将木块A与固定支架P相连,A和B初速均为零且二者间距离为L0,细绳处于刚好为原长但拉力为零的状态,传送带按图示方向以速度v0匀速运动(传送带足够长,弹簧不会超过弹性限度,重力加速度用g表示)。
(1)求:当木块B所受合力第一次为零时,A、B之间的距离l和细绳中的拉力FT。
(2)通过分析说明:从初始时刻到B与P相距最远的那一时刻的过程中,木块B运动的可能情况,并定性画出对应的v-t图像。
31、如图所示,位于竖直平面内的轨道BCDE,由一半径为R=2m的光滑圆弧轨道BC和光滑斜直轨道DE分别与粗糙水平面相切连接而成.现从B点正上方H=1.2m的A点由静止释放一质量m=1kg的物块,物块刚好从B点进入
圆弧轨道.已知CD的距离L=4m,物块与水平面的动摩擦因数
=0.25,重力加速度g取10m/s2,不计空气阻力.求:
(1)物块第一次滑上斜直轨道DE的最大高度;
(2)物块最终停在距离D点多远的位置.
32、质谱仪可对离子进行分析。如图所示,在真空状态下,脉冲阀P喷出微量气体,经激光照射产生电荷量为q、质量为m的正离子,自a板小孔进入a、b间的加速电场,从b板小孔射出,沿中线方向进入M、N板间的偏转控制区,最后到达探测器(可上下移动)。已知a、b板间距为d,极板M、N的长度和间距均为L,a、b间的电压为,
、
间的电压为
。不计离子重力及进入a板时的初速度。求:
(1)离子从b板小孔射出时的速度大小;
(2)离子自a板小孔进入加速电场至离子到达探测器的全部飞行时间。