1、下列运算正确的是( )
A.
B.
C.
D.
2、某个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图所示的是该台灯的电流与电阻
的关系图象,该图象经过点
.根据图象可知,下列说法正确的是( )
A.当时,
B.I与R的函数关系式是
C.当时,
D.当时,I的取值范围是
3、如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是( )
A. B.
C.
D.
4、如图, 五边形ABCDE中,AEBC,AC,BE交于点O, 四边形OCDE是平行四边形,若
的面积是5,四边形OCDE的面积是6,则
的面积是( )
A.2
B.2.5
C.3
D.4
5、为了保护生态环境,某工厂在一段时间内限产并投入资金进行治污改造.如图描述的是月利润y(万元)和月份x之间的变化关系,治污改造完成前是反比例函数图象的一部分,治污改造完成后是一次函数图象的一部分,则下列说法不正确的是( )
A.5月份该厂的月利润最低
B.治污改造完成后,每月利润比前一个月增加30万元
C.治污改造前后,共有6个月的月利润不超过120万元
D.治污改造完成后的第8个月,该厂月利润达到300万元
6、已知某几何体的三视图如图所示,其中左视图是一个正三角形,则该几何体的体积等于( )
A.
B.
C.
D.
7、在直角坐标系中,已知点P(3,4),现将点P作如下变换:①将点P先向左平移4个单位,再向下平移3个单位得到点P1;②作点P关于y轴的对称点P2;③将点P绕原点O按逆时针方向旋转90°得到点P3,则P1,P2,P3的坐标分别是( )
A. P1(0,0),P2(3,﹣4),P3(﹣4,3)
B. P1(﹣1,1),P2(﹣3,4),P3(4,3)
C. P1(﹣1,1),P2(﹣3,﹣4),P3(﹣3,4)
D. P1(﹣1,1),P2(﹣3,4),P3(﹣4,3)
8、下列四个圆形图案中,既是轴对称图形,又是中心对称图形的是( )
A.
B.
C.
D.
9、如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针旋转60°到△
的位置,连接
,则
的长为( )
A.2 B. C.
D.1
10、已知二次函数y=(a﹣1)x2+3ax+1图象上的四个点的坐标为(x1,m),(x2,m),(x3,n),(x4,n),其中m<n.下列结论可能正确的是( )
A.若a>,则 x1<x2<x3<x4
B.若a>,则 x4<x1<x2<x3
C.若a<﹣,则 x1<x3<x2<x4
D.若a<﹣,则 x3<x2<x1<x4
11、如图,直线a∥b,∠1=120°,∠2=105°,则∠3的度数为____
12、某隧道口横截面如图所示,上部分是圆弧形,下部分是矩形、已知隧道口最高点E与的距离
为4米,且弧
所在圆的半径为10米,则路面
的宽度为_____米.
13、分解因式:__________.
14、如图,在矩形中,点
在边
上,将矩形
沿
所在直线折叠,点
恰好落在边
上的点
处.若
,则折痕
的长为________.
15、在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同,从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片,两次抽取的卡片上数字之和为奇数的概率是_____.
16、某地需要开辟一条隧道,隧道的长度无法直接测量,如图所示,在地面上取一点
,使
到
、
两点均可直接到达,测量找到
和
的中点
、
,测得
的长为1100
,则隧道
的长度为__________
.
17、图1是一台实物投影仪,图2是它的示意图,折线O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AO⊥OM,垂足为点O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.
将图2中的BC绕点B向下旋转45°,使得BCD落在BC′D′的位置(如图3所示),此时C′D′⊥OM,AD′∥OM,AD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,结果精确到1cm)
18、如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.
(1)求证:CM=CN;
(2)若△CMN的面积与△CDN的面积比为3:1,求的值.
19、探究一,模型再现:m条直线最多可以把平面分割成多少个部分?
如图1,很明显,平面中画出1条直线时,会得到1+1=2个部分;所以,1条直线最多可以把平面分割成2个部分;
如图2,平面中画出第2条直线时,新增的一条直线与已知的1条直线最多有1个交点,这个交点会把新增的这条直线分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2条直线最多可以把平面分割成4个部分;
如图3,平面中画出第3条直线时,新增的一条直线与已知的2条直线最多有2个交点,这2个交点会把新增的这条直线分成3部分,从而多出3个部分,即总共会得到1+1+2+3=7个部分,所以,3条直线最多可以把平面分割成7个部分;
平面中画出第4条直线时,新增的一条直线与已知的3条直线最多有3个交点,这3个交点会把新增的这条直线分成4部分,从而多出4个部分,即总共会得到1+1+2+3+4=11个部分,所以,4条直线最多可以把平面分割成11个部分;……
探究二,类比迁移:n个圆最多可以把平面分割成多少个部分?
如图4,很明显,平面中画出1个圆时,会得到1+1=2个部分;所以,1个圆最多可以把平面分割成2个部分;
如图5,平面中画出第2个圆时,新增的一个圆与已知的1个圆最多有2个交点,这2个交点会把新增的这个圆分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2个圆最多可以把平面分割成4个部分;
如图6,平面中画出第3个圆时,新增的一个圆与已知的2个圆最多有4个交点,这4个交点会把新增的这个圆分成4部分,从而多出4个部分,即总共会得到1+1+2+4=8个部分,……
平面中画出第4个圆时,新增的一个圆与已知的3个圆最多有6个交点,这6个交点会把新增的这个圆分成6部分,从而多出6个部分,即总共会得到1+1+2+4+6=14个部分,……
(1)5条直线最多可以把平面分割成______个部分;
(2)m条直线最多可以把平面分割成______个部分(用m的代数式表示);
(3)5个圆最多可以把平面分割成______个部分;
(4)n个圆最多可以把平面分割成______个部分(用n的代数式表示);
(5)如果n个圆最多可以把平面分割成508个部分,求n的值(要求写出解答过程);
(6)5条直线和1个圆最多可以把平面分割成______个部分;
(7)m条直线和n个圆最多可以把平面分割成______个部分(用m、n的代数式表示).
20、给你1枚骰子,如何检测这枚骰子质地是否均匀?(骰子均匀的标准是:出现1、2、3、4、5、6向上的概率相同,概率越接近骰子质地越均匀)请你设计一个表格,用统计的方法检测1枚骰予的质量.
21、停课不停学,疫情期间,八(1)班30位同学参加运动线上打卡,张老师为了鼓励同学们积极锻炼,统计了这30人15天的打卡次数如下:
打卡次数 | 7 | 8 | 9 | 14 | 15 |
人数 | 6 | 9 | 6 | 3 | 6 |
(1)直接写出打卡次数的众数和中位数;
(2)求所有同学打卡次数的平均数;
(3)为了调动同学们锻炼的积极性,张老师决定制定一个打卡奖励标准,凡打卡次数达到或超过这个标准的同学将获得奖励,请你根据(1)、(2)中所求的统计量,帮助张老师制定一个较为合理的打卡奖励标准,并说明理由.
22、在平行四边形ABCD中,AB=10,∠ABC=60°,以AB为直径作⊙O,边CD切⊙O于点E.
(1)圆心O到CD的距离是______;
(2)求由弧AE、线段AD、DE所围成的阴影部分的面积.(结果保留π和根号)
23、如图,一块矩形草地的长为100m,宽为80m,欲在中间修筑两条互相垂直的宽为x(m)的小路,这时草坪的面积为y(m2).求y与x的函数关系式,并求出x的取值范围.
24、汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2016年盈利1500万元,到2018年盈利2160万元,且从2016年到2018年,每年盈利的年增长率相同.
(1)求每年盈利的年增长率;
(2)若该公司盈利的年增长率继续保持不变,那么2019年该公司盈利能否达到2500万元?