1、如图,已知AB是☉O的直径,弦AD、BC相交于P点,那么的值为( )
A.sin∠APC
B.cos∠APC
C.tan∠APC
D.
2、如图,小元要在一幅长、宽
的风景面的四周外围,镶上一条宽度相同的金色纸边,制成一幅挂图,使风景画的面积占整个挂图面积的54%,设金色纸边的宽为
,根据题意可列方程( )
A.
B.
C.
D.
3、掷一枚质地均匀的硬币一次,则掷到正面朝上的概率等于( )
A.1
B.
C.
D.0
4、如图,PA、PB是⊙O的两条切线,切点是A、B.如果OP=4,PA=,那么∠AOB等于( )
A. 90° B. 100° C. 110° D. 120°
5、某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离(千米)与货车行驶时间
(小时)之间的函数图象如图所示,现有以下4个结论:
①快递车从甲地到乙地的速度为80千米/时;
②甲、乙两地之间的距离为120千米;
③图中点的坐标为
;
④快递车从乙地返回时的速度为90千米/时.
以上4个结论中正确的是( )
A.①③④
B.①②④
C.②③④
D.③④
6、我们定义一种变换S:对于一个由5个数组成的数列S1,将其中的每个数换成该数在S1中出现的次数,可得到一个新数列S2.例如:当数列S1是 (4,2,3,4,2)时,经过变换S可得到的新数列S2是(2,2,1,2,2).若数列S1可以由任意5个数组成,则下列的数列可作为S2的是( )
A. (1,2,1,1,2) B. (2,2,2,3,3) C. (1,1,2,2,3) D. (1,2,1,2,2)
7、如图,圆内接四边形ABCD是由四个全等的等腰梯形组成,AD是⊙O的直径,则∠BEC的度数为( )
A.15° B.30° C.45° D.60°
8、如图,为测量某物体AB的高度,在D点测得A点的仰角为30°,朝物体AB方向前进20米,到达点C,再次测得点A的仰角为60°,则物体AB的高度为( )
A.10米
B.10米
C.20米
D. 米
9、国家近年来实施了新一轮农村电网改造升级工程,解决了农村供电“最后1公里”问题,电力公司在改造时把某一输电线铁塔建在了一个坡度为1:0.75的山坡CD的平台BC上(如图),测得∠AED=52°,BC=5米,CD=35米,DE=19米,则铁塔AB的高度约为(参考数据:sin52°≈0.79,tan52°≈1.28)( )
A.28米
B.29.6米
C.36.6米
D.57.6米
10、正方形的边长为3,如果边长增加x,那么面积增加y,则y与x之间的函数表达式是( )
A. y=3x B. y=(3+x)2 C. y=9+6x D. y=x2+6x
11、抛物线的顶点坐标为__________
12、已知命题“关于x的一元二次方程x2+bx+=0,当b<0时必有实数解”,能说明这个命题是假命题的一个反例可以是________.
13、如图,菱形ABCD的对角线AC与BD相交于点O,若AC=8,AD=5,则菱形ABCD的面积为____________.
14、如图,直线AB,AD与⊙O分别相切于点B、D两点,C为⊙O上一点,且∠BCD=140°,则∠A的度数是__________
15、如图,,动线段
的端点
分别在射线
上,点
是线段
的中点.点
由点
开始沿
方向运动,此时点
向点
运动,当点
到达点
时,运动停止.若
,则中点
所经过的路径与
所围成图形的面积是 _____.
16、若代数式有意义,则实数
的取值范围是______.
17、某商场按定价销售某种商品时,每件可获利100元;按定价的八折销售该商品5件与将定价降低50元销售该商品6件所获利润相等.
(1)该商品进价、定价分别是多少?
(2)该商场用10000元的总金额购进该商品,并在五一节期间以定价的七折优惠全部售出,在每售出一件该商品时,均捐献元给社会福利事业,该商场为能获得不低于3000元的利润,求
的最大值.
18、某公司决定投资燃油汽车与新能源汽车,该公司信息部的市场调研结果如下:
方案:若单独投资燃油汽车时,则所获利润
(千万元)与投资金额
(千万元)之间存在正比例函数关系例
,并且当投资2千万元时,可获利润0.8千万元;
方案:若单独投资新能源汽车时,则所获利润
(千万元)与投资金额
(千万元)之间存在二次函数关系:
,并且当投资1千万元时,可获利润1.4千万元;当投资3千万元时,可获利润3千万元.
(1)请分别求出上述的正比例函数表达式与二次函数表达式;
(2)如果该公司对燃油汽车与新能源汽车这两种产品投资金额相同,且获得总利润为5千万元,求此时该公司对这两种汽车的投资金额各是多少千万元?
(3)如果公司对燃油汽车投资千万元,对新能源汽车的投资金额是燃油汽车的两倍,投资所获总利润的利润率不低于60%,且获得总利润为不低于4千万元,直接写出
的取值范围.
19、化简:.
20、已知抛物线y=ax2+bx-3(a≠0)经过点(-2,-3).
(1)用a表示b.
(2)当x≥-2时,y≤-2,求抛物线的解析式.
(3)无论a取何值,若一次函数y2=a2x+m总经过y的顶点,求证:m≥.
21、如图,逆时针旋转一定角度后与
重合,且点C在AD上.
(1)指出旋转中心;
(2)若,
,求出旋转的度数;
(3)若,
,则AE的长是多少?为什么?
22、(1)计算:
(2)解分式方程: .
23、如图,已知二次函数的图象经过
,
两点.
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与轴交于点
,连接
,
,求
的面积.
24、某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.
(1)这次被调查的同学共有 人;
(2)补全条形统计图,并在图上标明相应的数据;
(3)扇形统计图中圆心角α= 度;
(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.