1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、如表所示为元素周期表的一部分,参照元素①~⑨在表中的位置,请回答下列问题:
族 周期 | IA |
| 0 | |||||
1 | ① | ⅡA | ⅢA | ⅣA | ⅤA | ⅥA | ⅦA |
|
2 |
| ⑧ |
|
| ⑨ | ② | ③ |
|
3 | ④ |
| ⑤ |
|
| ⑥ | ⑦ |
|
(1)③、④、⑦的原子半径由大到小的顺序是_________(用元素符号表示)。
(2)下列事实能说明②元素的非金属性比⑥元素的非金属性强的是__________。
a.②的单质与⑥元素的简单氢化物溶液反应,溶液变浑浊
b.在氧化还原反应中,1mol②单质比1mol⑥单质得电子多
c.②和⑥两元素的简单氢化物受热分解,前者的分解温度高。
(3)①、②两种元素按原子个数之比为1:1组成的常见液态化合物,在酸性溶液中能将Fe2+ 氧化,写出该反应的离子方程式 ___________________。
(4) 已知周期表中存在对角相似规则,如铍(Be)与铝化学性质相似,⑧的氧化物、氢氧化物也有两性,写出⑧的氢氧化物与④的最高价氧化物的水化物反应的化学方程式 _______________________。
(5)已知W+X=Y+Z(反应需要加热,),W、X、Y、Z分别是由①②⑨三种元素形成的四种10电子粒子(W、X为离子,Y、Z为分子),写出该化学方程式_________________。
(6)由表中元素形成的物质可发生如图中的反应,其中B、C、G是单质,B为黄绿色气体, D溶液显碱性。
①写出D溶液与G反应的离子方程式______________________。
②写出检验A溶液中溶质的阴离子的方法____________________。
③常温下,若电解1L0.1mol/L的A溶液,一段时间后测得溶液pH为12(忽略溶液体积变化),则该电解过程中转移电子的物质的量为:________________。
3、S、N元素是重要的非金属元素,其化合物应用广泛。
(1)红热木炭与浓H2SO4反应的化学方程式是C+2H2SO4CO2↑+2SO2↑+2H2O,该反应中浓硫酸的作用是作_______(填“氧化剂”或“还原剂”)。
(2)SO2能够使品红溶液褪色,体现了二氧化硫具有_______性(填“漂白性”或“还原性”)。
(3)关于氮的变化关系图如下:
上述流程中能够实现氮的固定的是_______(填“Ⅰ”“Ⅱ”或“Ⅲ”)。
(4)氨的催化氧化是工业上制硝酸的重要步骤,其反应为:4NH3(g)+5O2(g)4NO(g)+6H2O(g)。
①一定条件下,在体积10 L的密闭容器中进行,半分钟后,NO的物质的量增加了4.5 mol,则此反应的平均速率v(NH3)=_______mol·(L·s)-1;
②在相同温度下,向该容器中通入一定量的NH3气体,反应速率将_______(填“加快”“减慢”或“不变”)。
4、X、Y、Z是三种原子序数依次递增的前10号元素,X的某种同位素不含中子,Y形成的单质在空气中体积分数最大,三种元素原子的最外层电子数之和为12,其对应的单质及化合物转化关系如图所示。下列说法正确的是______
A.原子半径:X<Z<Y,简单气态氢化物稳定性:Y<Z
B.A、C均为10电子分子,A的沸点高于C的沸点
C.E和F均属于离子化合物,二者组成中阴、阳离子数目之比均为1∶1
D.同温同压时,B与D体积比≤1∶1的尾气,可以用NaOH溶液完全处理
5、A、B、C、D、E代表5种元素。请填空:
(1)A元素基态原子的最外层有3个未成对电子,次外层有2个电子,其元素名称为_______。
(2)B元素的负一价离子和C元素的正一价离子的电子层结构都与氩相同,B的元素符号为_______,C的元素符号为_______。
(3)D元素的正三价离子的3d能级为半充满,D的元素符号为_______,其基态原子的电子排布式为_______。
(4)E元素基态原子的M层全充满,N层没有成对电子,只有一个未成对电子,E的元素符号为_______,其基态原子的电子排布式为_______。
6、研究表明丰富的CO2完全可以作为新碳源,解决当前应用最广泛的碳源(石油和天然气)到本世纪中叶将枯竭的危机,同时又可缓解由CO2累积所产生的温室效应,实现CO2的良性循环。
(1)目前工业上有一种方法是用CO2和H2在230℃催化剂条件下转化生成甲醇蒸汽和水蒸气。下图表示恒压容器中0.5 mol CO2和1.5 mol H2转化率达80%时的能量变化示意图。
①写出该反应的热化学方程式: 。
②能判断该反应达到化学平衡状态的依据是 。
a.容器中压强不变 b.H2的体积分数不变
c.c(H2)=3c(CH3OH) d.容器中密度不变
e.2个C=O断裂的同时有6个H-H断裂。
(2)人工光合作用能够借助太阳能,用CO2和H2O制备化学原料.下图是通过人工光合作用制备HCOOH原理的示意图。根据要求回答问题:
①该过程是将 转化为 。(以上两空选填“电能”“太阳能”“化学能”)
②催化剂b表面的电极反应方程式为 。
(3)某国科研人员提出了使用氢气和汽油(汽油化学式用C8H18表示)混合燃料的方案,以解决汽车CO2的排放问题。该方案主要利用储氢材料CaH2产生H2和用汽油箱贮存汽油供发动机使用,储氢系统又捕集汽油燃烧产生的CO2,该系统反应如下图所示:
解决如下问题:
①写出CaH2的电子式 。
②反应1中氧化剂与还原剂的物质的量之比是: 。
③如该系统反应均进行完全,试写出该系统总反应的化学方程式 。
7、有A、B、C、D、E五种原子序数依次增大的元素(原子序数均小于30)。A的基态原子2p能级有3个单电子;C的基态原子2p能级有1个单电子;E的内部各能层均排满,且有成单电子;D与E同周期,价电子数为2。则:
(1)写出基态E原子的价电子排布式_____________________。
(2)A的单质分子中π键的个数为___________。
(3)A、B、C三元素第一电离能由大到小的顺序为__________ (用元素符号表示)。
(4)B元素的氢化物的沸点是同族元素中最高的,原因是______________________。
(5) A的最简单氢化物分子的空间构型为_______,其中A原子的杂化类型是________。
(6)C和D形成的化合物的晶胞结构如下图,已知晶体的密度为ρ g/cm3,阿伏加德罗常数为NA,求晶胞边长a=__________cm。 (用含ρ、NA的计算式表示)
8、I.“低碳经济”时代,科学家利用“组合转化”等技术对CO2进行综合利用。
(1)CO2和H2在一定条件下可以生成乙烯:6H2(g)+2CO2(g)CH2==CH2(g)+4H2O(g) △H=a kJ·mol-1
已知:H2(g)的燃烧热为285.8 kJ·mol-1,CH2=CH2(g)的燃烧热为1411.0 kJ·mol-1,H2O(g)= H2O(l)
△H=-44.0 kJ·mol-1,则a=______kJ·mol-1。
(2)上述生成乙烯的反应中,温度对CO2的平衡转化率及催化剂的催化效率影响如图,下列有关说法不正确的是_______(填序号)
①温度越高,催化剂的催化效率越高
②温发低于250℃时,随着温度升高,乙烯的产率增大
③M点平衡常数比N点平衡常数大
④N点正反应速率一定大于M点正反应速率
⑤增大压强可提高乙烯的体积分数
(3)2012年科学家根据光合作用原理研制出“人造树叶”。右图是“人造树叶”的电化学模拟实验装置图,该装置能将H2O和CO2转化为O2和有机物C3H8O。阴极的电极反应式为:__________________。
II.为减轻大气污染,可在汽车尾气排放处加装催化转化装置,反应方程式为:
2NO(g)+2CO(g) 2CO2(g)+N2(g)。
(4)上述反应使用等质量的某种催化剂时,温度和催化剂的比表面积对化学反应速率的影响对比实验如下表,c(NO)浓度随时间(t)变化曲线如下图:
①表中a=___________。
②实验说明,该反应是__________反应(填“放热”或“吸热”)。
③若在500℃时,投料NO的转化率为80%,则此温度时的平衡常数K=_____。
(5)使用电化学法也可处理NO的污染,装置如右图。已知电解池阴极室中溶液的pH在4~7之间,写出阴极的电极反应式:______。吸收池中除去NO的离子方程式为:_________________。
9、自然界中存在大量的金属元素和非金属元素,它们在工农业生产中有着广泛的应用。
(1)纳米氧化亚铜(Cu2O)是一种用途广泛的光电材料,已知高温下Cu2O比CuO稳定。
①画出基态Cu原子的价电子轨道排布图____________;
②从核外电子排布角度解释高温下Cu2O比CuO更稳定的原因____________。
(2)CuSO4溶液常用作农药、电镀液等,向CuSO4溶液中滴加足量浓氨水,直至产生的沉淀恰好溶解,再向其中加入适量乙醇,可析出深蓝色的Cu(NH3)4SO4·H2O晶体。
①Cu(NH3)4SO4·H2O晶体中存在的化学键有____________(填字母序号)。
a.离子键 b.极性键 c.非极性键 d.配位键
②SO42—的立体构型是____________,其中S原子的杂化轨道类型是____________。
③已知NF3与NH3的空间构型都是三角锥形,但NF3不易与Cu2+形成配离子,其原因是__________________。
(3)NaCl和MgO都属于离子化合物,NaCl的熔点为801.3℃,MgO的熔点高达2800℃。造成两种晶体熔点差距的主要原因是____________。
(4)合成氨工业中,原料气(N2、H2及少量CO、NH3的混合气)在进入合成塔前常用醋酸二氨合铜(I)溶液来吸收原料气体中的CO(Ac-代表CH3COO-),该反应是:
[Cu(NH3)2]Ac+CO+NH3[Cu(NH3)3CO]Ac(醋酸羰基三氨合铜)(I) △H<0
①C、N、O三种元素的第一电离能由小到大的顺序为____________;
②配合物[Cu(NH3)3CO]Ac中心原子的配位数为_________。
(5)铜的化合物种类很多,右图是氯化亚铜的晶胞结构,已知晶胞的棱长为a cm,则氯化亚铜密度的计算式为:ρ=____________g/cm3(用NA表示阿伏加德罗常数)。
10、高铁酸盐()具有极强的氧化性和优良的絮凝功能,在水处理方面有一定的发展前景。但是由于存在自催化现象(即分解产物
可催化高铁酸盐的分解),限制了它的大规模应用,研究使其稳定的方法尤为关键。
已知:
I.制备高铁酸盐
(1)制备的原理是:
________
Ⅱ.高铁酸盐稳定性的研究
(2)碱性环境下,久置的溶液中除了产生红褐色
外,同时还会产生绿色的
。此过程的反应为
、___________。
为研究使稳定的方法,分别做以下4个实验:
| 序号 | X | 现象 |
| a | 2滴0.01 mol/L KI | 紫色迅速褪去 |
b | 2滴蒸馏水 | 分别用紫外可见分光光度计测三支试管内溶液的吸光度,结果如下图所示。 | |
c | 2滴0.01 mol/L NaF 溶液 | ||
d | 2滴0.01 mol/L |
资料:吸光度大小与溶液中成正比。
(3)甲同学预测d试管内的实验现象应与a试管相似,预测依据是___________。
(4)但吸光度结果图显示甲同学预测并不正确。结合化学用语,从化学反应速率角度解释d试管内的现象与a试管不同的原因是:___________。
(5)“—■—”曲线为___________ (填入“试管c”或“试管d”)的实验结果,理由是___________。
(6)综合以上讨论,任意写出一种能稳定的方法___________ 。
11、取1.77g镁铝合金投入到的盐酸中,合金完全溶解,放出氢气1.904L(已折算成标况)请计算:
(1)镁铝合金中镁的质量分数=______%(保留三位有效数字)
(2)上述溶液中继续滴加的NaOH溶液,得到沉淀3.10g。则V的最大值=______mL。(写出计算过程)
12、铬铁矿的主要成分为Fe(CrO2)2,还含有MgO、Al2O3等杂质,以铬铁矿为原料制备K2Cr2O7的工艺如下(部分操作和条件略)。
注:各物质不同温度溶解度数据
物质 | 50℃ | 80℃ | 100℃ |
K2Cr2O7 | 37.0 | 73.0 | 102.0 |
Na2SO4 | 46.2 | 43.7 | 42.5 |
回答下列问题:
(1)“高温煅烧”中Fe(CrO2)2转化为NaFeO2和Na2CrO4,则Na2O2的作用是___________;写出Fe(CrO2)2转化为NaFeO2和Na2CrO4反应的化学方程式:___________。
(2)“水浸”过程NaFeO2强烈水解,滤渣①的成分是MgO和___________。
(3)“调pH”中有沉淀生成,生成沉淀反应的离子方程式为___________。
(4)“酸化”用的是硫酸而不是盐酸,原因是:___________;室温下,“酸化”反应的
,酸化后溶液中c(Cr2O
)=0.25mol·L-1。若
有
转化为
,则此时该温度下溶液的
___________。
(5)“沉铬”中析出K2Cr2O7晶体的方法是___________。
13、探究影响合成尿素反应化学平衡的因素,有利于提高尿素的产率。以CO2、NH3为原料合成尿素的总反应为2NH3(g)+CO2(g)⇌CO(NH2)2(s)+H2O(g) ΔH=-86.98kJ·mol-1
已知反应I:NH2COONH4(s)⇌CO(NH2)2(s)+H2O(g) ΔH=+72.49kJ·mol-1;
反应II:2NH3(g)+CO2(g)⇌NH2COONH4(s) ΔH
回答下列问题:
(1)反应II的ΔH=______kJ·mol-1。
(2)实验小组利用下列装置测定温度对反应NH2COONH4(s)⇌2NH3(g)+CO2(g)的影响。
具体操作如下:
步骤I:先闭K3,然后打开K1和K2,开启真空泵抽气至测压仪数值为0后关闭K1;
步骤II:关闭K2,缓慢开启K3至U型管中硅油液面两侧相平并保持不变,记录不同温度下的压强数据如下表所示:
t/℃ | 20 | 25 | 30 | 35 | 40 |
p/kPa | 8.60 | 11.40 | 16.24 | 20.86 | 30.66 |
①25℃时,NH2COONH4(s)分解的平衡常数Kp=________(kPa)3(结果保留一位小数),随温度升高K值逐渐______(填“增大”“减小”或“不变”),其主要原因是_________。
②步骤I中测压仪数值若还未到0就关闭K1和K2,则会导致Kp值_______(填“偏小”“偏大”或“不变”,下同);步骤II中读数时U型管左侧液面偏高,Kp值_____。
(3)对于合成尿素反应,不同氨碳比[]条件下,CO2平衡转化率α(CO2)与温度的关系如图所示。温度一定时,CO2平衡转化率随
值增大而增大,其原因是_____。当
一定时,随温度升高,CO2平衡转化率先增大后减小,减小阶段是因为____(填“反应I”或“反应II”)占主导因素。