得到
  • 汉语词
  • 汉语典q
当前位置 :

海南省临高县2026年中考模拟(3)数学试卷(附答案)

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、复数在复平面内对应的点在(  

    A.第一象限 B.第二象限 C.第三象限 D.第四象限

  • 2、函数的定义域为(       

    A.

    B.

    C.

    D.

  • 3、命题“”的否定是(       

    A.

    B.

    C.

    D.

  • 4、已知的内角ABC所对的边分别为abc,且,则△ABC的面积为(       

    A.

    B.

    C.

    D.

  • 5、,则       

    A.

    B.

    C.

    D.

  • 6、已知命题pxRx21>0”;命题qxR则正确的是(  

    A.pq为真,非p为真 B.pq为真,非p为假

    C.pq为真, p为真 D.pq为真,非p为假

  • 7、已知双曲线的左、右焦点分别为,过的直线与的两条渐近线分别交于两点,若,则的离心率为(       

    A.

    B.

    C.

    D.

  • 8、之间与°终边相同的角是(       ).

    A.

    B.

    C.

    D.

  • 9、如果今天是星期三,则2020天后的那一天是星期(       

    A.五

    B.六

    C.日

    D.一

  • 10、等于( )

    A.

    B.

    C.

    D.

  • 11、为抛物线的焦点,过且倾斜角为的直线交两点, 为坐标原点,则的面积为(   )

    A.   B.   C.   D.

  • 12、设集合,则       

    A.

    B.

    C.

    D.

  • 13、已知集合,则       

    A.

    B.

    C.

    D.

  • 14、已知关于的不等式成立的一个必要不充分条件是,则的取值范围是(       

    A.

    B.

    C.

    D.

  • 15、已知是公差为的等差数列, 的前项和,若,则(   )

    A.   B.   C.   D.

     

  • 16、航天之父俄罗斯科学家齐奥科夫斯基(K.E.Tsiolkovsky)于1903年给出火箭最大速度的计算公式.其中,是燃料相对于火箭的喷射速度,是燃料的质量,是火箭(除去燃料)的质量,v是火箭将燃料喷射完之后达到的速度.已知,则当火箭的最大速度可达到时,火箭的总质量(含燃料)至少是火箭(除去燃料)的质量的(       )倍.

    A.

    B.

    C.

    D.

  • 17、已知直线的斜率为5,且,则该直线方程为(       

    A.

    B.

    C.

    D.

  • 18、命题“”的否定为(       

    A.

    B.

    C.

    D.

  • 19、,若的等比中项,则最小值为(       

    A.4

    B.3

    C.1

    D.

  • 20、可化为

    A.

    B.

    C.

    D.

二、填空题 (共6题,共 30分)
  • 21、中,,若满足条件的有且仅有一个,则实数的取值范围是______.

  • 22、英国著名物理学家牛顿用“作切线”的方法求函数零点时,给出的“牛顿数列”在航空航天中应用广泛,若数列满足,则称数列为牛顿数列如果函数,数列为牛顿数列,设,且___________

  • 23、是一组基底,向量 (xyR),则称(xy)为向量在基底下的坐标,现已知向量在基底下的坐标为(-2,2),则在另一组基底下的坐标为________

  • 24、若二次函数的图象与曲线存在公切线,则实数的取值范围是________.

  • 25、如图所示,在平面四边形中,,在中,角ABC的对应边分别为abc,若,则的面积为__________

  • 26、已知某社区的家庭年收入(单位:万元)的频率分布直方图如图所示,同一组中的数据用该组区间的中点值做代表,则该社区内家庭的平均年收入的估计值是________万元.

三、解答题 (共6题,共 30分)
  • 27、如图,在中,).

    (1)建立适当的直角坐标系,求点的轨迹的方程,并说明轨迹是什么曲线;

    (2)当时,过的直线将(1)中的曲线分成长度为1:2的两部分,求直线的方程.

  • 28、已知函数为函数的导函数.

    (Ⅰ)讨论函数的单调性;

    (Ⅱ)当时,证明对任意的都成立.

  • 29、已知函数是定义在上的偶函数,且当时,.

    (1)求的解析式;

    (2)若,求函数上的最小值.

  • 30、某地为践行绿水青山就是金山银山的理念,大力开展植树造林.假设一片森林原来的面积为亩,计划每年种植一些树苗,且森林面积的年增长率相同,当面积是原来的倍时,所用时间是年.

    (1)求森林面积的年增长率;

    (2)到今年为止,森林面积为原来的倍,则该地已经植树造林多少年?

    (3)为使森林面积至少达到亩,至少需要植树造林多少年(精确到整数)?(参考数据:

  • 31、(1)计算:

    (2)已知,计算的值.

  • 32、已知函数

    1)若,求函数的单调区间;

    2)若关于的不等式上恒成立,求实数的取值范围.

查看答案
下载试卷
得分 160
题数 32

类型 中考模拟
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
范文来(fanwenlai.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 范文来 fanwenlai.com 版权所有 滇ICP备2023002272号-32