1、祝青大附中学子2022年金榜题名.以下4个汉字属于轴对称图形的是( )
A.金
B.榜
C.题
D.名
2、一次数学测试,某小组名同学的成绩统计如下(有两个数据被遮盖):
组员 | 甲 | 乙 | 丙 | 丁 | 戊 | 平均成绩 | 众数 |
得分 |
|
|
则被遮盖的两个数据依次是( )
A.
B.
C.
D.
3、资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值【 】
A.精确到亿位 B.精确到百分位 C.精确到千万位 D.精确到百万位
4、如图,在中,
,
,直线
,顶点
在直线
上,直线
交
于点
,交
与点
,若
,则
的度数是( )
A.30° B.35° C.40° D.45°
5、在多项式①;②
;③
;④
中,能用完全平方公式分解因式的有( )
A.①②
B.②③
C.①④
D.②④
6、在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看做是轴对称图形的是( )
A.感
B.动
C.中
D.国
7、若正方形的外接圆半径为2,则其内接圆半径为( )
A.
B.
C.
D.1
8、如图,在等边△ABC中,AB=6,∠AFB=90°,则CF的最小值为( )
A.3
B.
C.6-3
D.3-3
9、将多项式ax2-4ax+4a分解因式,下列结果中正确( )
A. a(x-2)2 B. a(x+2)2
C. a(x-4)2 D. a(x+2)(x-2)
10、如图,在四边形ABCD中,∠A=90°,AB=3,AD=
,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )
A.1.5 B.3.5 C.5 D.2.5
11、写出一组能说明命题“对于任意实数a,b,若,则
”是假命题的a,b的值为
_________,
___________.
12、如图,已知BD⊥AG,CE⊥AF,BD、CE分别是∠ABC和∠ACB的角平分线,若BF=3,ED=2,GC=5,则△ABC的周长为_____.
13、如图,直径为10的⊙A经过点C(0,5)和点O (0,0),B是y轴右侧⊙A优弧上一点,则∠OBC 的余弦值为 _________________.
14、如图,点O是矩形ABCD的对角线AC的中点,OM∥AB交AD于点M,若OM=2,BC=6,则OB的长为______.
15、如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是________.
16、若抛物线经过点(-6,5)(2,5),则其对称轴是________.
17、解分式方程:
18、在平面直角坐标系xOy中,抛物线y=﹣x2+2tx+2.
(1)求抛物线的对称轴(用含t的代数式表示);
(2)将点A(﹣1,3)向右平移5个单位长度,得到点B.
①若抛物线经过点B求t的值;
②若抛物线与线段AB恰有一个交点,结合函数图象直接写出t的取值范围.
19、甲、乙两人用如图的两个分格均匀的转盘做游戏,游戏规则如下:分别转动两个转盘,转盘停止后,指针分别指向一个数字(若指针停止在等份线上,那么重转一次,直到指针指向某一数字为止).用所指的两个数字相乘,如果积是奇数,则甲获胜;如果积是偶数,则乙获胜.请你解决下列问题:求甲、乙两人获胜的概率.
20、计算:
21、平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)如图1,若该抛物线经过原点O,且a=.
①求点D的坐标及该抛物线的解析式.
②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.
(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围.
22、如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.
(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.
(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.
①求证:BD⊥CF;
②当AB=4,AD=时,求线段BG的长.
23、材料1:在设计人体雕塑时,存在一个分隔点,使雕塑的上部(腰以上)与下部(腰以下)之比,等于下部与全部(全身)之比,可以增加视觉美观,数学上把这个点叫“黄金分割点”. 为了研究这个点,我们在线段AB上取点C(如图1),点C把AB分成AC和CB两段,其中BC是较小的一段,现要使即可.为了简便起见,设AB=1,AC=x,则CB=1-x,代入
,即
,也即x2+x-1=0,解之得,
.所以
=
,人们把
这个数叫黄金分割数,点C叫“黄金分割点”.
材料2:由线段的黄金分割点联想到图形的“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成面积为S1和面积为S2的两部分(设S1<S2),如果,那么称直线l为该图形的“黄金分割线”.
(1)如图2,点C是线段AB的黄金分割点(AC>CB),取线段AB的中点O,作点C关于点O的对称点,则
;继续取线段AC的中点
,作点
关于点
的对称点
,试猜想点
是否线段A
的黄金分割点,若是,请证明,若不是,请说明理由;
(2)如图3,在平面直角坐标系中, A(-,0),B(1,0),C(4-
,2),求△ABC中经过点C的“黄金分割线”解析式.
24、如图,在中,
为边
的中点.点
从点
出发,以每秒
个单位长度的速度沿
运动到点
停止,同时点
从点
出发,以每秒
个单位长度的速度沿折线
运动到点
停止,当点
停止运动时,点
也停止运动.当点
不与
的顶点重合时,过点
作
交
的边于点
以
和
为边作
,设点
的运动时间为
(秒),
的面积为
(平方单位).
(1)当点与点
重合时,求
的值;
(2)用含的代数式表示
的长;
(3)求与
之间的函数关系式;
(4)连结直接写出
将
分成面积相等的两部分时
的值.