1、如图,在△ABC 中,∠C=90°,AB=10cm,BC=6cm,动点 P 从点 C 出发,沿 C﹣A﹣B﹣C 运动,速度为 2cm/s,动点 Q 从点 C 出发,沿 C﹣B﹣A﹣C 运动,速度为cm/s,两点相遇时停止.这一过程中 P,Q 两点之间的距离 y 与时间 t 之间的关系的大致图象是( )
A. B.
C.
D.
2、过反比例函数y=图象上一点向A分别向x轴作垂线,垂足为B,若三角形OAB的面积为3,则此函数图象必经过点( )
A.(4,3) B.(﹣2,﹣3) C.(1,﹣3) D.(3,﹣1)
3、 如图,已知AB∥CD,直线分别交AB、CD于点E、F,EG平分∠BEF,若∠EFG=40°,则∠EGF的度数是 ( )
A.60° B.70° C.80° D.90°
4、下列各式正确的是( )
A. a5+3a5=4a5 B. (﹣ab)2=﹣a2b2 C. D. m4•m2=m8
5、4的平方根是( )
A. 4 B. 2 C. -2 D. ±2
6、△ABC中,∠C=30°,AC=6,BD是△ABC的中线,∠ADB=45°,则AB=( )
A.3
B.2
C.6
D.
7、实数a、b、c在数轴上的对应点的位置如图所示,若|a|=|b|,则下列结论中正确的是( )
A.a+b<0 B.b+c<0 C.a+c>0 D.ac>bc
8、如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=.其中正确结论的个数是( )
A.4 B.3 C.2 D.1
9、如图是由5个相同的正方形组成的几何体的左视图和俯视图,则该几何体的主视图不可能是( )
A. B.
C.
D.
10、如图,矩形ABOC的顶点A的坐标为(-4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是( )
A. B.
C.
D.
11、(2016·河南中考)已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是________.
12、如图,小明为了测量小河对岸大树BC的高度,他在点A测得大树顶端B的仰角是45°,沿斜坡走米到达斜坡上点D,在此处测得树顶端点B的仰角为30°,且斜坡AF的坡比为1︰2.则小明从点A走到点D的过程中,他上升的高度为____米;大树BC的高度为____米(结果保留根号).
13、设m、n是方程x2+x-1001=0的两个实数根,则m2+2m+n的值为____.
14、如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达点C,乙船正好到达甲船正西方向的点B,则乙船的航程为______海里(结果保留根号).
15、函数是反比例函数,并且图象在一、三象限,则
________.
16、如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=8,BD=6,点E,F分别为AO,DO的中点,则线段EF的长为 ______.
17、已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点B,AB=2.点P在抛物线上,线段AP与y轴的正半轴交于点C,线段BP与x轴相交于点D,设点P的横坐标为m.
(1)求这条抛物线的解析式;
(2)用含m的代数式表示线段CO的长;
(3)当tan∠ODC=时,求∠PAD的正弦值.
18、已知,且
与
成反比例,
与
成正比例;当
时,
,
时,
.求
与
的函数关系式.
19、如图,已知∠1=∠2,∠B=∠D,求证:AB=AD.
20、有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.
(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.
(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式.
(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用),最大利润是多少?
21、在如图所示的平面直角坐标系中,抛物线与x轴的交点为A、B.与y轴的交点为C.
(1)请你求出点A、B、C的坐标并直接写出直线的关系式;
(2)若点F是直线上方抛物线上的任意一点,连接
、
,请你求出
面积的最大值;
(3)点D在该抛物线的对称轴上,点E是平面直角坐标系内的任意一点,以点B、C、D、E为顶点的四边形是矩形,则点E的坐标是__________(请直接写出答案)
22、如图,△ABC中,AB=AC,点P是三角形右外一点,且∠APB=∠ABC.
(1)如图1,若∠BAC=60°,点P恰巧在∠ABC的平分线上,PA=2,求PB的长;
(2)如图2,若∠BAC=60°,探究PA,PB,PC的数量关系,并证明;
(3)如图3,若∠BAC=120°,请直接写出PA,PB,PC的数量关系.
23、已知关于x的一元二次方程x2﹣(m+2)x+2m=0.
(1)求证:不论m为何值,该方程总有两个实数根;
(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.
24、如图,已知一次函数与反比例函数
(
)的图象交于
,
两点,且与
轴和
轴分别交于点
、点
.
(1)求反比例函数与一次函数的表达式;
(2)点在
轴上,且
,请求出点
的坐标.