1、如图,在平面直角坐标系中,四边形ABCD为菱形,A,B两点的坐标分别是(4,0),(0,3),点C,D在坐标轴上,则菱形ABCD的周长等于( )
A.16
B.20
C.24
D.26
2、第二届“红色日记”征文大赛于2020年1月12日正式启动,征文内容分为两部分:“不忘初心”和“红色传承”.其中五位评委给参赛者小亮的征文评分分别为:88、92、90、93、88,则这组数据的众数是 ( )
A.88 B.90 C.92 D.93
3、据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示应为
A.
B.
C.
D.
4、二次函数的图象经过三点,则它的解析式为
A. B.
C.
D.
5、下列运算正确的是 ( )
A. B.
C. D.
6、下列等式从左到右的变形,属于因式分解的是( )
A.8x2 y3=2x2⋅4 y3
B.( x+1)( x﹣1)=x2﹣1
C.3x﹣3y﹣1=3( x﹣y)﹣1
D.x2﹣8x+16=( x﹣4)2
7、如图,,点O在直线
上,若
,
,则
的度数为( )
A.65°
B.55°
C.45°
D.35°
8、2022年5月,教育部发布《义务教育劳动课程标准(2022年版)》,其中根据不同学段制定了相应的学段目标.某学校为了让学生热爱劳动,尊重劳动,在劳动中提升综合素质,定期开展课外劳动实践活动.甲、乙两班在一次体验挖土豆的活动中,甲班挖1000千克土豆与乙班挖800千克土豆所用的时间相同.已知甲班平均每小时比乙班多挖80千克土豆,设乙班平均每小时挖千克的土豆,依题意,下面所列方程正确的是( )
A.
B.
C.
D.
9、用配方法将方程变形为
,则
的值是( )
A.4
B.5
C.6
D.7
10、下列两个图形一定相似的是( )
A. 两个矩形
B. 两个等腰三角形
C. 两个五边形
D. 两个正方形
11、《算法统宗》是中国古代数学名著,作者是我国明代数学家程大位.在《算法统宗》中有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”
译文:“有一架秋千,当它静止时,踏板离地l尺.将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”
设秋千的绳索长为x尺,根据题意可列方程为_______________.
12、从这七个数中,随机取出一个数,记为
,那么
使关于
的方程
有整数解,且使关于
的不等式组
有解的概率为 .
13、若|x+2|+=0,则xy的值为__________.
14、如图1,把一张正方形纸片对折得到长方形ABCD,再沿∠ADC的平分线DE折叠,如图2,点C落在点C′处,最后按图3所示方式折叠,使点A落在DE的中点A′处,折痕是FG,若原正方形纸片的边长为6cm,则FG=____cm.
15、在三角形ABC中,,
,
,D,E,F分别是AB,BC,CA的中点,G是重心,则
______.
16、2021年重庆两江新区公布第一季度经济运行情况,其中3月长安汽车以自主品牌突破500000辆的好成绩.数据500000用科学记数法表示为______.
17、如图,已知抛物线y=﹣x2+bx+c经过A(0,1)、B(4,3)两点.
(1)求抛物线的解析式;
(2)求tan∠ABO的值;
(3)过点B作BC⊥x轴,垂足为C,点M是抛物线上的一个动点,直线MN平行于y轴交直线AB于N,如果M、N、B、C为顶点的四边形是平行四边形,请直接写出M点的横坐标;
(4)已知点E为抛物线上位于第二象限内任一点,且E点横坐标为m,作边长为10的正方形EFGH,使EF∥x轴,点G在点E的右上方,那么,对于大于或等于﹣1的任意实数m,FG边与过A、B两点的直线都有交点,请说明理由.
18、正方形ABCD中,E为AD的中点,以E为顶点作∠BEF=∠EBC,EF交CD于点F.
(1)求tan∠BEF;
(2)求DF:CF的值.
19、△ABC中,∠C=90°,点D在边AB上,AD=AC=7,BD=BC.动点M从点C出发,以每秒1个单位的速度沿CA向点A运动,同时,动点N从点D出发,以每秒2个单位的速度沿DA向点A运动.当一个点到达点A时,点M、N两点同时停止运动.设M、N运动的时间为t秒.
(1)求cosA的值.
(2)当以MN为直径的圆与△ABC一边相切时,求t的值.
20、有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.
(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.
(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式.
(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用),最大利润是多少?
21、化简
22、如图,已知 DB∥EC,∠C=∠D.求证:AC∥ DF.
23、二次函数的顶点
是直线
和直线
的交点.
(1)用含的代数式表示顶点
的坐标.
(2)①当时,
的值均随
的增大而增大,求
的取值范围.
②若,且
满足
时,二次函数的最小值为
,求
的取值范围.
(3)试证明:无论取任何值,二次函数
的图象与直线
总有两个不同的交点.
24、在一个不透明的小布袋中装有4个质地、大小完全相同的小球,它们分别标有数字0,1,2,3,小明从布袋里随机摸出一个小球,记下数字为,小红在剩下的3个小球中随机摸出一个小球,记下数字为
,这样确定了点
的坐标
.
(1)画树状图或列表,写出点所有可能的坐标;
(2)小明和小红约定做一个游戏,其规则为:若在第一象限,则小明胜;否则,小红胜;这个游戏公平吗?请你作出判断并说明理由.