1、如图所示,四边形的对角线
和
相交于点
,下列判断正确的是( )
A.若,则
是平行四边形
B.若,则
是平行四边形
C.若,
,则
是平行四边形
D.若,
,则
是平行四边形
2、下列各点中,在直线上的点是( )
A. B.
C.
D.
3、下列结论正确的是( )
A.顺次连接平行四边形各边的中点得到的四边形不一定是平行四边形
B.顺次连接矩形各边中点得到的四边形是矩形
C.顺次连接菱形各边的中点得到的四边形是菱形
D.顺次连接正方形各边的中点得到的四边形是正方形
4、某商品进价为800元,出售时标价为1200元,后来由于该商品积压,准备打折销售,若要保证利润率不低于5%,则最多可打几折( )
A.6
B.7
C.8
D.9
5、如图,在平行四边形中,
的平分线BE交
于点
,则
的长是( )
A.
B.
C.
D.
6、如图Rt△ABC中∠BAC=90°,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得△AFB,连接EF,下列结论:①△AED≌△AEF;②△ABC的面积等于四边形AFBD的面积;③BE+DC=DE;④BE2+DC2=DE2;⑤∠DAC=22.5°,其中正确的是( )
A. ①②④ B. ③④⑤ C. ①③④ D. ①②⑤
7、一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,有四个苗圃生产基地投标(单株树的价格都一样).采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:
| 树苗平均高度(单位:m) | 标准差 |
甲苗圃 | 1.8 | 0.2 |
乙苗圃 | 1.8 | 0.6 |
丙苗圃 | 2.0 | 0.6 |
丁苗圃 | 2.0 | 0.2 |
请你帮采购小组出谋划策,应选购( )
A.甲苗圃的树苗
B.乙苗圃的树苗;
C.丙苗圃的树苗
D.丁苗圃的树苗
8、如图,是
的角平分线,且
=
,则
与
的面积之比为( )
A. B.
C.
D.
9、在平面直角坐标系中,将△ABC各点的纵坐标保持不变,横坐标都加上3,则所得图形与原图形的关系是:将原图形( )
A.向左平移3个单位
B.向右平移3个单位
C.向上平移3个单位
D.向下平移3个单位
10、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C.
D.
11、某校运动会入场式的得分是由各班入场时,评委从服装统一,动作整齐和口号响亮这三项分别给分,最后按3:3:4的比例计算所得,若801班在服装,动作,口号分别是90分、92分和86分,则该班的入场式得分是__________分.
12、如果最简二次根式和
是同类二次根式,那么a=________.
13、如图,在矩形ABCD中,E,F分别是AD,BC边上的点,AE=CF,∠EFB=45°,若AB=5,BC=13,则AE的长为_____.
14、已知实数a、b满足,
,则代数式
的值为______.
15、如图,正方形中,对角线
,
交于点
,
点在
上,
,
,垂足分别为点
,
,
,则
______.
16、化简:___________.
17、如图,在平行四边形ABCD中,∠A=130°,点E 在AD上,DE=DC.求∠ECB的度数.
18、已知x=,则x2+x+1=________.
19、已知y是x的一次函数下表列出了部分对应值,则m=_______
20、已知样本数据1,2,4,3,5,有以下说法:①平均数是3 ,②中位数是4 ,③方差是2,正确的说法有_______________(填序号)
21、A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发.图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:
(1)表示乙离A地的距离与时间关系的图象是 (填l1或l2);甲的速度是 km/h,乙的速度是 km/h;
(2)求出l1,l2的解析式,并标注自变量的取值范围。
22、1号探测气球从海拔5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).
(1)根据题意,填写下表:
上升时间/min | 10 | 30 | … | x |
1号探测气球所在位置的海拔/m | 15 |
| … |
|
2号探测气球所在位置的海拔/m |
| 30 | … |
|
(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由;
(3)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?
23、如图,将矩形纸片沿过点A的直线翻折,使点B恰好与其对角线
的中点O重合,折痕与边
交于点E.延长
交
于点F连接
.
(1)按要求补全图形;
(2)求证:四边形是菱形;
(3)若,求
的长.
24、小明在解方程时运用了下面的方法:由
,又由
可得
,将这两式相加可得
,将
两边平方可解得
=-1,经检验
=-1是原方程的解.
请你参考小明的方法,解下列方程:
(1)
(2).
25、某中学八年级举行跳绳比赛,要求每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在八(1)、八(5)两班中产生.下表是这两个班的5名学生的比赛数据(单位:次)
| 1号 | 2号 | 3号 | 4号 | 5号 | 平均数 | 方差 |
八(1)班 | 139 | 148 | 150 | 160 | 153 | 150 | 46.8 |
八(5)班 | 150 | 139 | 145 | 147 | 169 | 150 | 103.2 |
根据以上信息,解答下列问题:
(1)求两班的优秀率及两班数据的中位数;
(2)请你从优秀率、中位数和方差三方面进行简要分析,确定获冠军奖的班级.