1、 某社区青年志愿者小分队年龄情况如表所示:
则这12名队员年龄的众数、中位数分别是( )
A.2,20岁 B.2,19岁 C.19,20岁 D.19,19岁
2、如图,在Rt△ABC中,∠ACB=90°,AC=BC=2,CD⊥AB于点D.点P从点A出发,沿A→D→C的路径运动,运动到点C停止,过点P作PE⊥AC于点E,作PF⊥BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象( )
A.
B.
C.
D.
3、若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范围是( )
A.m<0
B.m>0
C.m<
D.m>
4、已知a=b,下列变形不正确的是( )
A.a+5=b+5
B.a﹣5=b﹣5
C.5a=5b
D.
5、下列运算正确的是( )
A.
B.
C.
D.
6、下列函数中,图象经过点(1,-1)的反比例函数解析式是( )
A. B.
C.
D.
7、下列因式分解正确的是( )
A.
B.
C.
D.
8、下列运算正确的是( )
A.a2+a=a3
B.(a2)3=a5
C.a8÷a2=a4
D.a2•a3=a5
9、若二次函数的图象的顶点坐标为(2,-1),且抛物线过(0,3),则二次函数的解析式是( )
A.y=-(x-2)2-1
B.y=-(x-2)2-1
C.y=(x-2)2-1
D.y=(x-2)2-1
10、下面四幅图是我国一些博物馆的标志,其中是中心对称图形的是( )
A.
B.
C.
D.
11、如图,点A1、A2、A3在x轴上,且OA1=A1A2=A2A3,分别过点A1、A2、A3作y轴的平行线,与反比例函数的图象分别交于点B1、B2、B3,分别过点B1、B2、B3作x轴的平行线,分别与y轴交于点C1、C2、C3,连结OB1、OB2、OB3,那么图中阴影部分的面积之和为 .
12、若关于x的分式方程的解是负数,则m的取值范围是 .
13、将从1开始的连续自然数按以下规律排列:若有序数对表示第n行,从左到右第m个数,如
表示15,则表示2023的有序数对是___.
14、如图,将边长为的正五边形
沿对角线
折叠,使点
落在正五边形内部的
处,则
和
三点______同一条直线上(填“在”或者“不在”).
15、如图,△OB1A1,△A1B2A2,△A2B3A3,…,△An﹣1BnAn,都是一边在x轴上的等边三角形,点B1,B2,B3,…,Bn都在反比例函数y=(x>0)的图象上,点A1,A2,A3,…,An,都在x轴上,则A2021的坐标为_____.
16、如图,一“L”型纸片是由5个边长都是10cm的正方形拼接而成,过点I的直线分别与AE,JN交于点P,Q,且“L”型纸片被直线PQ分成面积相等的上下两部分,将该纸片沿BG,CH,DI,IJ折成一个无盖的正方体盒子后,点P,Q之间的距离为_____cm.
17、计算:.
18、下面是小明同学设计的“过直线外一点作已知直线的平行线”的尺规作图过程.
已知:如图1,直线l和直线l外一点P.
求作:直线PQ,使直线PQ直线l.
作法:如图2,
①在直线l上取一点A,连接PA;
②作PA的垂直平分线MN,分别交直线l,线段PA于点B,O;
③以O为圆心,OB长为半径作弧,交直线MN于另一点Q;
④作直线PQ,所以直线PQ为所求作的直线.
根据上述作图过程,回答问题:
(1)用直尺和圆规,补全图2中的图形(保留作图痕迹);
(2)完成下面的证明:
证明:∵直线MN是PA的垂直平分线,
∴PO= ,∠POQ=∠AOB=90°.
∵OQ=OB,
∴POQ≌
AOB.
∴ = .
∴PQl( )(填推理的依据).
19、计算: .
20、计算:cos245°+cot230°.
21、某学校举行“青春心向党建功新时代”演讲比赛活动,准备购买甲、乙两种奖品,小昆发现用480元购买甲种奖品的数目恰好与用360元购买乙种奖品的数目相等,已知甲种奖品的单价比乙种奖品的单价多10元.
(1)求甲、乙两种奖品的单价各是多少元?
(2)如果需要购买甲乙两种奖品共100个,且甲种奖品的数目不低于乙种奖品数目的2倍,问购买多少个甲种奖品,才使得总购买费用最少?
22、教育局为了了解初一学生参加社会实践活动的天数,随机抽查本市部分初一学生参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:
(1)这次共抽取 名学生进行统计调查,补全条形图;
(2) ,该扇形所对圆心角的度数为 ;
(3)如果该市有初一学生人,请你估计“活动时间不少于
天”的大约有多少人?
23、在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?
(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=4,BC=3,CD=x,求线段CP的长.(用含x的式子表示)
24、如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC到点E,F,使AE=CF,依次连接B,F,D,E各点.
(1)求证:△BAE≌△BCF;
(2)若∠ABC=50°,则当∠EBA= °时,四边形BFDE是正方形.