1、如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是( )
A.50°、130°
B.都是10°
C.50°、130°或10°、10°
D.以上都不对
2、下列各式由左边到右边的变形中,属于因式分解的是( )
A. B.
C. D.
3、如图,有三种卡片,分别是边长为a的正方形卡片1张,边长为b的正方形卡片4张和长宽为a、b的长方形卡片4张,现使用这9张卡片拼成一个大的正方形,则这个大的正方形边长为( )
A.a+3b
B.2a+b
C.a+2b
D.4ab
4、下列命题是假命题的是 ( )
A. 直线 a、b、c 在同一平面内,若 a⊥b,b⊥c,则 a∥c.
B. 直线外一点与已知直线上各点连接的所有线段中,垂线段最短 .
C. 点 P(—5,3)与点 Q(—5,—3)关于 x 轴对称.
D. 以 3 和 5 为边的等腰三角形的周长为 11.
5、在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )
A. (a+2b)(a﹣b)=a2+ab﹣2b2
B. a2﹣b2=(a+b)(a﹣b)
C. (a+b)2=a2+2ab+b2
D. (a﹣b)2=a2﹣2ab+b2
6、若、
使分式
有意义,应满足的条件是( )
A.
B.,但
、
不都为零
C.
D.,且
7、如果一个单项式与的积为
,则这个单项式为( )
A. B.
C.
D.
8、一副直角三角板叠放在一起可以拼出多种图形,如图①—④,每幅图中所求角度正确的个数有( )
①∠BFD=15°;②∠ACD+∠ECB=150°;③∠BGE=45° ;④∠ACE=30°
A.1个 B.2个 C.3个 D.4个
9、下面说法不正确的是( )
A.1的平方根是±1
B.-1的算术平方根是-1
C.0平方根是0
D.-1的立方根是-1
10、已知二元一次方程组,如果用加减法消去n,则下列方法可行的是( )
A.①×4+②×5
B.①×5+②×4
C.①×5﹣②×4
D.①×4﹣②×5
11、如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第12个图形中有全等三角形的对数是( )
A. 80对 B. 78对 C. 76对 D. 以上都不对
12、下列语句中正确的是( )
A.相等的角是对顶角 B.有公共顶点且相等的角是对顶角
C.有公共顶点的两个角是对顶角 D.角的两边互为反向延长线的两个角是对顶角
13、估计的大小约等于____或_____.(误差小于1)
14、如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2017次运动后,动点P的坐标是_________,经过第2020次运动后,动点P的坐标是_________.
15、计算:(a-b) 2 =__________;
16、等腰三角形一腰上的高与另一腰的夹角是36°,则这个等腰三角形顶角的度数是________.
17、点A(m+3,m+1)在x轴上,则点A坐标为________.
18、已知一个钝角的度数为 ,则x的取值范围是______
19、如图所示,直线相交于点
,若
,则
__________(度).
20、如图,直线AB、CD、EF相交于点O,∠AOD=150°,∠DOE=80°,则∠AOF=____.
21、某市为了建设国家级卫生城市.市政部门决定搭配A、B两种园艺造型共50个摆放在市区,现有3490盆甲种花卉和2950盆乙种花卉可供使用,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.
(1)问符合题意的搭配方案有几种?请你帮助设计出来.
(2)若搭配一个A种造型的费用是800元,搭配一个B种造型的费用是960元,试说明(1)中哪种方案费用最低?最低费用是多少元?
22、中,
,点
分别是
边
上的点,点P是一动点.令
.
(1)若点P在线段AB上,如图(1)所示,且,则
__________
;
(2)若点P在AB上运动,如图(2)所示,则之间有何关系?猜想并说明理由.
(3)若点P运动到边AB的延长线上,如图(3)所示,则之间有何关系?猜想并说明理由.
(4)若点P运动到形外,如图(4)所示,则
的关系为:_________.
23、先化简,再求值:a(a-3b)+(a+b)2-a(a-b),其中a=1,b=-.
24、完成推理填空:
如图,已知直线分别截直线
于点
平分
,交
于点
,
,求
的度数.
解:因为( ),
(已知),
所以
所以 ( )
所以( )
因为(邻补角的定义),
所以
因为平分
(已知),
所以(角平分线的定义) .
所以
25、节约用水和合理开发利用水资源是每个公民应尽的责任和义务,为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段引导市民节约用水.某城市实行阶梯水价,月用水量在吨以内按正常收费,超出部分则收较高水费,该市某户居民今年2月份用水
吨,交水费
元;3月份用水
吨,交水费
元,请回答下列问题.
(1)每月在吨以内的水费每吨多少元?每月超出
吨部分的水费每吨多少元?
(2)某户居民4月份用水吨,请用含有
的代数式表示该户居民4月份应交的水费.
26、解下列方程组: