1、已知点A(﹣2,y1),B(3,y2)是反比例函数y=(k<0)图象上的两点,则有( )
A. y1<0<y2 B. y2<0<y1 C. y1<y2<0 D. y2<y1<0
2、点A(2,3)关于x轴的对称点的坐标为( )
A.(2,﹣3)
B.(﹣2,﹣3)
C.(﹣2,3)
D.(﹣3,2)
3、如图,扇形中,
,以
为直径作半圆,若
,则阴影部分的周长为( )
A.
B.
C.
D.
4、下列各式:
①=9;
②(﹣5)0=1;
③(a+b)2=a2+b2;
④(﹣3ab3)2=9a2b6;
⑤3x2﹣4x=﹣x,其中计算正确的是( )
A.①②③ B.①②④ C.③④⑤ D.②④⑤
5、某商场一名业务员12个月的销售额(单位:万元)如下表:
月份(月) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
销售额(万元) | 6.2 | 9.8 | 9.8 | 7.8 | 7.2 | 6.4 | 9.8 | 7.8 | 7 | 9.8 | 10 | 7.5 |
则这组数据的众数和中位数分别是( )
A.10,8
B.9.8,7.8
C.9.8,7.9
D.9.8,8.1
6、为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x元,每个实心球y元,则根据题意列二元一次方程组得( )
A.
B.
C.
D.
7、下列运算正确的是( )
A.
B.
C.
D.
8、已知点(﹣2,y1),(3,y2)都在直线y=﹣x﹣5上,则y1,y2的值的大小关系是( )
A.y1<y2
B.y1>y2
C.y1=y2
D.不能确定
9、按一定规律排列的多项式:,
,
,
,…,第n个多项式是( ).
A.
B.
C.
D.
10、对于数据2,2,3,2,5,2,10,2,5,2,3 ①众数是2 ②众数与中位数的数值不等 ③中位数与平均数相等 ④平均数与众数的数值相等.其中正确的结论有 ( )
A.1个 B.2个 C.3个 D.4个
11、如图,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),则“兵”位于点_________ .
12、某种型号的小型无人机着陆后滑行的距离(米)关于滑行的时间
(秒)的函数解析式是
,无人机着陆后滑行______秒才能停下来.
13、2020年6月23日,中国自主研发的北斗三号最后一颗卫星成功发射.据统计,国内已有超过6600000辆营运车辆导航设施应用北斗系统,数据6600000可用简短的形式表示为______.
14、如图,过
的顶点
、
、
,且
,
,则弧
长为________.
15、要使式子有意义,
的取值范围是 .
16、如图,在Rt△ABC中,∠C=90°,BC=4,BA=5,点D在边AC上的一动点,过点D作DE∥AB交边BC于点E,过点B作BF⊥BC交DE的延长线于点F,分别以DE,EF为对角线画矩形CDGE和矩形HEBF,则在D从A到C的运动过程中,当矩形CDGE和矩形HEBF的面积和最小时,则EF的长度为_____.
17、在平面直角坐标系中,我们定义点P(a ,b )的“伴随点”为Q,且规定:当a ≥ b时,Q为( b,-a );当 a<b 时,Q为( a,-b).
(1)点(2,1)的伴随点坐标为__________;
(2)若点A(a ,2)的伴随点在函数y=的图像上,求a的值;
(3)已知直线l与坐标轴交于(6,0),(0,3)两点.将直线l上所有点的伴随点组成一个新的图形记作M.请直接写出直线y=—x+c与图形M有交点时相应的c的取值范围为__________.
18、某商场购进一种单价为10元的商品,根据市场调查发现:如果以单价20元售出,那么每天可卖出30个,每降价1元,每天可多卖出5个,若每个降价x(元),每天销售y(个),每天获得利润W(元).
(1)写出y与x的函数关系式;
(2)求W与x的函数关系式(不必写出x的取值范围)
(3)若降价x元(x不低于4元)时,销售这种商品每天获得的利润最大为多少元?
19、某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.
最受欢迎的校本课程调查问卷 您好!这是一份关于您最喜欢的校本课程问卷调查表,请在表格中选择一个(只能选一个)您最喜欢的课程选项,在其后空格内打“√”,非常感谢您的合作.
|
校本课程 | 频数 | 频率 |
A | 36 | 0.45 |
B |
| 0.25 |
C | 16 | b |
D | 8 |
|
合计 | a | 1 |
请您根据图表中提供的信息回答下列问题:
(1)统计表中的a= ,b= ;
(2)“D”对应扇形的圆心角为 度;
(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;
(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.
20、如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.
(1)求证:△DAF≌△DCE.
(2)求证:DE是⊙O的切线.
(3)若BF=2,DH=,求四边形ABCD的面积.
21、求不等式组的整数解,
22、计算:
23、如图,将的边
延长到点E,使得
,连接
,交
于点F
(1)求证:;
(2)若,连接
求证:四边形
是矩形
24、已知一次函数的图象分别交x轴、y轴于A、B两点,且与反比例函数
的图象在第一象限交于点C(4,n),CD⊥x轴于D.
(1)求m、n的值,并在给定的直角坐标系中作出一次函数的图象;
(2)如果点P、Q分别从A、C两点同时出发,以相同的速度沿线段AD、CA向D、A运动,设AP=k.
①k为何值时,以A、P、Q为顶点的三角形与△AOB相似?
②k为何值时,△APQ的面积取得最大值并求出这个最大值.