1、用图示装置及药品制备有关气体,其中能达到实验目的的是( )
选项 | A | B | C | D |
装置及药品 | ||||
实验目的 | 制H2S | 制氨气 | 制NO2 | 制氯气 |
A.A
B.B
C.C
D.D
2、铜是重要金属,Cu的化合物在科学研究和工业生产中具有许多用途,如CuSO4溶液常用作电解液,电镀液等。请回答以下问题:
(1)CuSO4可由金属铜与浓硫酸反应制备,该反应的化学方程式为___________。
(2)CuSO4粉末常用来检验一些有机物中的微量水分,其原因是_______。
(3)SO42-的立体构型是________,其中S原子的杂化轨道类型是_______。
3、A、B、C、D均为中学化学常见的纯净物,A是单质。它们之间有如图反应关系:
(1)若B是气态氢化物,C、D是氧化物且会造成光化学烟雾污染。写出反应③的化学方程式:___。
(2)若A是太阳能电池用的光伏材料。C、D为钠盐,两种物质中除钠、氧外的元素位于同一主族,且溶液均显碱性。写出反应②的化学方程式:___。
(3)若D物质具有两性,反应②③均要用强碱溶液,反应④是通入过量的一种引起温室效应的主要气体。写出反应④的离子方程式:___。
(4)若A是应用最广泛的金属。反应④用到A,反应②⑤均用到同一种非金属单质。写出反应④的离子方程式:___。
4、硅是最理想的太阳能电池材料,高性能晶硅电池是建立在高质量晶硅材料基础上的。工业上可以用如图所示的流程制取高纯硅。
(1)硅在周期表中的位置是_______________,反应1中氧化剂与还原剂的物质的量之比为:__________________
(2)粗硅与HCl反应完全后,经冷凝得到的SiHCl3 (沸点31.8℃)中含有少量SiCl4 (沸点57.6℃)和SiH2Cl2 (沸点8.2℃)、SiH3Cl(沸点-30.4℃)提纯SiHCl3采用的方法为__________,整个过程中可以循环利用的物质X是:_____________(填化学式)
(3)提纯粗硅的过程中必须严格控制无水无氧,原因之一是硅的卤化物极易水解,写出SiCl4遇水剧烈反应的化学方程式___________________________________
(4)硅在有HNO3存在的条件下,可以与HF生成H2SiF6,同时有不溶于水的气体生成,该气体遇空气变为红棕色,硅单质发生的化学方程式为_____________________________________________________
(5)某工厂用100吨纯度为75%的石英砂为原料经第一步反应制得的粗硅中含硅28吨,则该过程中硅的产率是:__________(精确到小数点后两位)
5、I.研究氮氧化物与悬浮在大气中海盐粒子的相互作用时, 涉及如下反应: 2NO(g) +Cl2(g) 2ClNO(g) ΔH< 0
写出该反应的平衡常数表达式 。
为研究不同条件对反应的影响,:在恒温条件下, 向2 L恒容密闭容器中加入0.2 mol NO和0.1 mol Cl2, 10 min时反应达到平衡。测得10 min内v(ClNO) =7.5×10-3 mol·L-1·min-1, 则平衡后n(Cl2) = mol, NO的转化率α1= 。其他条件保持不变, 反应在恒压条件下进行, 平衡时NO的转化率α2 α1(填“>” “<” 或“=”), 平衡常数K (填“增大” “减小” 或“不变”) 。若要使K减小, 可采取的措施是 。
II. 实验室可用NaOH溶液吸收NO2, 反应为2NO2+2NaOH NaNO3+NaNO2+H2O。含0.2 mol NaOH的水溶液与0.2 mol NO2恰好完全反应得1 L溶液A, 溶液B为0.1 mol·L-1的CH3COONa溶液, 则两溶液中c(NO3-) 、c(NO2-) 和c(CH3COO-) 由大到小的顺序为 。
(已知HNO2的电离常数Ka=7.1×10-4 mol·L-1, CH3COOH的电离常数Ka=1.7×10-5 mol·L-1)
可使溶液A和溶液B的pH相等的方法是 。
a. 向溶液A中加适量水 b. 向溶液A中加适量NaOH
c. 向溶液B中加适量水 d. 向溶液B中加适量NaOH
III.(1)已知丙醛的燃烧热为,丙酮的燃烧热为
,试写出丙醛燃烧热的热化学方程式 。
(2)以H2、O2、熔融盐Na2CO3组成燃料电池,采用电解法制备Fe(OH) 2,装置如右下图所示,其中P端通入CO2。
①石墨I电极上的电极反应式为 。
②通电一段时间后,右侧玻璃管中产生大量的白色沉淀,且较长时间不变色。则下列说法中正确的是 (填序号)。
A. X、Y两端都必须用铁作电极 B. 可以用NaOH溶液作为电解液
C. 阴极发生的反应是:2H2O+ 2e-= H2↑+ 2OH- D. 白色沉淀只能在阳极上产生
6、开发利用核能可以减少对化石能源的依赖。UO2是一种常用的核燃料,其铀元素中需达到5%。该核燃料的一种制备流程如下:
(1)天然铀主要含99.3%和0.7%
,
和
互为_______。
(2)I中,将含有硫酸的UO2SO4溶液通入电解槽,如下图所示。
①A电极是_______(填“阴极”或“阳极”),其电极反应式是_______。
②U4+有较强的还原性。用质子交换膜隔开两极区溶液可以_______,从而提高U4+的产率。
(3)III中使用的F2可通过电解熔融KF、HF混合物制备,不能直接电解液态HF的理由是HF属于___化合物,液态HF几乎不电离。
(4)IV中利用了相对分子质量对气体物理性质的影响。铀的氟化物的熔沸点如下:
| UF4 | UF6 |
熔点/℃ | 1036 | 64(150kPa) |
沸点/℃ | 1417 | 56.5升华 |
①离心富集时,采用UF6的优点:
a.F只有一种核素,且能与U形成稳定的氟化物;
b._______。
②和
的相对分子质量之比约为_______(列出计算表达式)。
7、以某含铜矿石[主要成分是FeCuSi3O13(OH)4,含少量SiO2、CaCO3]为原料制备CuSO4·5H2O的流程如下:
已知相关试剂成分和价格如下表所示:
请回答下列问题:
(1)含铜矿石粉碎的目的是_______。
(2)酸浸后的溶液中除了Cu2+外,还含有的金属阳离子是_______。
(3)固体1溶于NaOH溶液的离子方程式为__________。
(4)结合题中信息可知:所选用的试剂1的名称为_______;加入该试剂时,发生反应的离子方程式为_________。
(5)试剂2 可以选择下列物成中的______。滤渣2中一定含有的物质为______(填化学式)。
A. Cu B.CuO C.Cu(OH)2 D.Fe
(6)CuSO4·5H2O用于电解精炼铜时,导线中通过9.632×103C的电量,测得阳极溶解的铜为16.0g。而电解质溶液(原溶液为1 L)中恰好无CuSO4,则理论上阴极质量增加_____g,原电解液中CuSO4的浓度为__ 。已知一个电子的电量为1.6×10-19C)
8、碳的化合物的转换在生产、生活中具有重要的应用,如航天员呼吸产生的CO2用Sabatier反应处理,实现空间站中O2的循环利用。
Sabatier反应:CO2(g)+4H2(g)CH4(g)+2H2O(g);
水电解反应:2H2O(1) 2H2(g) +O2(g)。
(1)将原料气按n(CO2):n(H2)=1:4置于密闭容器中发生Sabatier反应,测得H2O(g)的物质的量分数与温度的关系如图所示(虚线表示平衡曲线)。
①该反应的平衡常数K随温度降低而________(填“增大”或“减小”)。
②在密闭恒温(高于100℃)恒容装置中进行该反应,下列能说明达到平衡状态的是_____。
A.混合气体密度不再改变 B.混合气体压强不再改变
C.混合气体平均摩尔质量不再改变 D. n(CO2):n(H2)=1:2
③200℃达到平衡时体系的总压强为p,该反应平衡常数Kp的计算表达式为_______。(不必化简,用平衡分,压代替平衡浓度计算,分压=总压×物质的量分数)
(2)Sabatier反应在空间站运行时,下列措施能提高CO2转化率的是____(填标号)。
A.适当减压 B.合理控制反应器中气体的流速
C.反应器前段加热,后段冷却 D.提高原料气中CO2所占比例
(3)一种新的循环利用方案是用Bosch反应CO2(g)+4H2(g)C(s)+2H2O(g)代替Sabatier反应。
①已知CO2(g)、H2O(g)的生成焓分别为-394kJ/mol、-242kJ/mol,Bosch反应的△H=_____kJ/mol。(生成焓指一定条件下由对应单质生成lmol化合物时的反应热)
②一定条件下Bosch反应必须在高温下才能启动,原因是______________。若使用催化剂,则在较低温度下就能启动。
③Bosch反应的优点是_______________。
9、为有效控制雾霾,各地积极采取措施改善大气质量。有效控制空气中氮氧化物、碳氧化物和硫氧化物显得尤为重要。
(1)在汽车排气管内安装催化转化器,可将汽车尾气中主要污染物转化为无毒的大气循环物质。
已知:① ∆H=180.5kJ·
②C和CO的燃烧热(∆H)分别为-393.5kJ·和-283kJ·
则2NO(g)+2CO(g)=N2(g)+2CO2(g) ∆H=_________kJ·
(2)将0.20molNO和0.10molCO充入一个容积为1L的密闭容器中,反应过程中物质浓度变化如图所示。
①CO在0—9min内的平均反应速率=__________ mol·L-1·
(保留两位有效数字);第12min时改变的反应条件可能为_________。
A.升高温度 B.加入NO
C.加催化剂 D.降低温度
②该反应在第18min时又达到平衡状态,此时的体积分数为________(保留三位有效数字),化学平衡常数K=____________(保留两位有效数字)。
(3)通过人工光合作用能将水与燃煤产生的转化为HCOOH和
。已知常温下0.1mol·
的HCOONa溶液pH=10,则HCOOH的电离常数Ka=__________。
10、间氯苯甲醛是新型农药、医药等有机合成的中间体,是重要的有机化工产品。实验室制取间氯苯甲醛的过程如下。
Ⅰ.Cl2的制备
舍勒发现氯气的方法至今还用于实验室制备氯气。本实验中利用该方法制备Cl2。
(1)该方法可以选择图中的_____(填字母标号)为Cl2发生装置,反应中氧化剂和还原剂的物质的量之比为_______。
(2)选择图中的装置收集一瓶纯净干燥的Cl2,接口的连接顺序为a→___________(按气流方向,填小写字母标号)
(3)试用平衡移动原理解释用饱和食盐水除去Cl2中混有的HCl的原因:_____________________。
Ⅱ.间氯苯甲醛的制备
反应原理:
实验装置和流程如图所示:
(4)图中仪器A的名称是_____________。
(5)间氯苯甲醛的制备过程中,二氯乙烷的作用是________________________;该实验要求无水操作,理由是____________________________________________;该实验有两次恒温过程,为控制反应温度仪器A处可采用________加热的方法。
11、某实验小组制备,取1.12g实验制得的产物(已知
的相对分子质量为158.6)加水溶解,配成100mL溶液,用移液管取出25.00mL于锥形瓶中,滴入几滴
作指示剂,已知
为砖红色沉淀,用浓度为0.100
的硝酸银标准溶液滴定,重复滴定三次测得硝酸银标准溶液用量分别为19.98mL、18.00mL、20.02mL。
(1)产物的纯度为_______(保留三位有效数字);
(2)写出简要计算过程:_______。
12、CO2的综合利用是解决温室效应问题的有效途径。
I.CO2转化成有机物实现碳循环。
C2H4(g)+H2O(l)=C2H5OH(l) △H1=-44.2kJ•mol-1
2CO2(g)+2H2O(l)=C2H4(g)+3O2(g) △H2=+1411.0kJ•mol-1
(1)2CO2(g)+3H2O(l)=C2H5OH(l)+3O2(g)△H3=___。
II.CO2催化加氢合成乙烯。
(2)CO2催化加氢生成乙烯和水的反应中,产物的物质的量之比n(C2H4)∶n(H2O)=__。当反应达到平衡时,若增大压强,则n(C2H4)__(填“变大”“变小”或“不变”)。
(3)在某铁系催化剂催化下,温度、氢碳比[=x]对CO2平衡转化率的影响以及温度对催化效率影响如图所示。
①下列有关说法正确的是__(填字母)。
A.为提高CO2的平衡转化率,工业生产中应在尽可能低的温度下合成乙烯
B.增大氢碳比,可以提高CO2的平衡转化率
C.温度低于300℃时,随温度升高乙烯的平衡产率增大
D.平衡常数:K(M)>K(N)
②在总压为2.1MPa的恒压条件下,M点时,CO2的平衡转化率为,则该条件下用平衡体系中各气体分压表示的平衡常数(Kp)的计算式(只需列式)为Kp=_(各气体分压=平衡体系中各气体的体积分数×总压)
(4)二氧化碳催化加氢合成乙烯反应往往伴随副反应,生成C3H6、C3H8、C4H8等低碳烃。一定温度和压强条件下,为了提高反应速率和乙烯选择性,应当__。
III.CO2与水催化氢化制甲烷。
(5)HCOOH是CO2转化为CH4的中间体:CO2HCOOH
CH4。当镍粉用量增加10倍后,甲酸的产量迅速减少,则当增加镍粉用量时,CO2镍催化氢化制甲烷的两步反应中反应速率增加较大的一步是__(填“I”或“Ⅱ”)。
13、Mg、C、Ni能形成众多化合物,由三者按一定比例熔合而成的合金材料X具有超导电性。回答下列问题:
(1)基态Ni原子价层电子排布式为_______,基态镁原子的第一电离能大于基态铝原子的原因是_______。
(2)丁二酮肟是检验的灵敏试剂,二者作用可得到鲜红色沉淀(记为Q),检验原理如下:
①丁二酮肟分子中碳原子的杂化轨道类型为_______,1个丁二酮肟分子中含键数目为_______。
②假设Q没有形成分子内氢键,则其沸点比形成分子内氢键时的Q沸点_______(填“高”或“低”);Q分子中不存在的作用力类型为_______(填标号)。
A.键 B.极性键 C.离子键 D.配位键
(3)点燃条件下镁能与发生置换反应:
。
的分子构型为_______,若不考虑生成的碳单质,另外三种物质中不存在_______晶体(填晶体类型)。
(4)X的晶胞结构中镁原子位于顶点,镍原子位于面心,它们构成两种八面体空隙,一种由镍原子构成,另一种由镍原子和镁原子一起构成,两种八面体空隙的数量之比是,碳原子填充在镍原子构成的八面体空隙中,沿晶胞立方格子对角线取得的截图如图所示。
①若A(左前方镁原子)、B的原子坐标分别为,
,则C的原子坐标为_______。
②设阿佛伽德罗常数的值为,密度为
,则
_______(用含
、
的式子表示)。