得到
  • 汉语词
  • 汉语典q
当前位置 :

昌江2024-2025学年第二学期期末教学质量检测试题(卷)高三数学

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、年某省高考体育百米测试中,成绩全部介于秒与秒之间,抽取其中个样本,将测试结果按如下方式分成六组:第一组,第二组,第六组,得到如下频率分布直方图.则该名考生的成绩的平均数和中位数保留一位小数分别是(       

    A.   

    B.   

    C.   

    D.   

  • 2、已知分别是内角的对边, 时, 面积的最大值为(

    A.   B.   C.   D.

  • 3、从数字1,2,3,4,5这5个数中,随机抽取2个不同的数,则这两个数的和为偶数的概率是

    A.   B.

    C.   D.

     

  • 4、是空间三条不同直线,是空间两个不同的平面,则下列命题中,下列命题不成立的是(       

    A.当时,若,则

    B.当,且内的射影时,若,则

    C.当时,若,则

    D.当,且时,若,则

  • 5、上随机取一个实数m,能使函数上有零点的概率为

    A.

    B.

    C.

    D.

  • 6、不等式的解集是( )

    A.

    B.

    C.

    D.

  • 7、若关于x的一元二次方程有实数根,且,则下列结论中错误的是( )

    A.当时,

    B.

    C.当时,

    D.二次函数的图象与x轴交点的坐标为

  • 8、已知,且,则实数的值为(  

    A.12 B. C. D.6

  • 9、孙子定理在世界古代数学史上具有相当高的地位,它给出了寻找共同余数的整数问题的一般解法.右图是某同学为寻找共同余数为2的整数n而设计的程序框图,若执行该程序框图,则输出的结果为(   )

    A.29 B.30 C.31 D.32

  • 10、已知,若存在实数),当)时,满足,则的取值范围为(       

    A.

    B.

    C.

    D.

  • 11、函数的图象为,以下结论错误的是(  

    A.图象关于直线对称

    B.图象关于点对称

    C.函数在区间内是增函数

    D.图象向右平移个单位长度可以得到图象

  • 12、设随机变量,若,则等于( )

    A.0.5

    B.0.9

    C.0.8

    D.0.7

  • 13、函数的图象大致是(       

    A.

    B.

    C.

    D.

  • 14、已知函数的一段图象如图所示, 顶点与坐标原点重合, 的图象上一个最低点, 轴上,若内角所对边长为,且的面积满足,将右移一个单位得到,则的表达式为(   )

    A.   B.

    C.   D.

     

  • 15、已知集合,若,则实数的取值组成的集合是(       

    A.

    B.

    C.

    D.

  • 16、在一个箱子中装有大小、形状完全相同的3个白球和2个黑球,现从中有放回地摸取5次,每次随机摸取一球,设摸得的白球个数为,黑球个数为,则(   ).

    A. B.

    C. D.

  • 17、在等差数列中,,则数列的前9项和等于  

    A.126

    B.130

    C.147

    D.210

  • 18、复数( )

    A. B. C. D.

  • 19、已知集合,则集合中元素的个数为

    A.2 B.3

    C.4   D.5

     

  • 20、已知函数是定义在上的偶函数,且对任意的,当,若直线与函数的图像在内恰有两个不同的公共点,则实数的值是

    A.0

    B.0或

    C.

    D.0或

二、填空题 (共6题,共 30分)
  • 21、在矩形中,,则__________.

  • 22、已知是椭圆的两个焦点,满足的点总在椭圆的内部,则椭圆离心率的取值范围是________

  • 23、中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意为:现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续走了7天,共走了700公里.则这匹马第7天所走的路程为__________

  • 24、如果直线将圆:平分,且不经过第四象限,则的斜率取值范围是_________.

  • 25、设函数,若对任意的实数a,总存在,使得,则实数m的取值范围是________

  • 26、如图,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DAPB=BA,则四面体PBCD的体积的最大值是____.

三、解答题 (共6题,共 30分)
  • 27、已知函数.

    (1)求为自然对数的底数)上的最大值;

    (2)对任意给定的正实数,曲线上是否存在两点PQ,使得是以О为直角顶点的直角三角形,且此直角三角形斜边的中点在y轴上?

  • 28、已知等差数列的首项为p,公差为,对于不同的自然数,直线轴和指数函数的图象分别交于点(如图所示),记的坐标为,直角梯形的面积分别为,一般地记直角梯形的面积为.

    1)求证:数列是公比绝对值小于1的等比数列;

    2)设的公差,是否存在这样的正整数,构成以为边长的三角形?并请说明理由;

    3)设的公差为已知常数,是否存在这样的实数p使得(1)中无穷等比数列各项的和?并请说明理由.

  • 29、已知椭圆的焦距为,四个顶点构成的四边形面积为

    (1)求椭圆的标准方程;

    (2)斜率存在的直线与椭圆相交于两点,为坐标原点,,若点在椭圆上,请判断的面积是否为定值,如果是,求出定值;如果不是,说明理由.

  • 30、已知数列满足:(常数),,(.数列满足:.

    1)分别求的值:

    2)求数列的通项公式;

    3)问:数列的每一项能否均为整数?若能,求出的所有可能值;若不能,请说明理由.

  • 31、如图,在正方体中,为棱上一点(不含端点),为棱的中点.

    (1)若为棱的中点,

    (i)求直线与平面所成角的正弦值;

    (ii)求平面和平面的夹角的余弦值;

    (2)求直线所成角余弦值的取值范围.

  • 32、设数列是公差大于0的等差数列,为数列的前项和.已知,且构成等比数列.

    (1)求数列的通项公式:

    (2)若数列满足,设是数列的前项和,求满足不等式的最大值.

查看答案
下载试卷
得分 160
题数 32

类型 期末考试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
范文来(fanwenlai.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 范文来 fanwenlai.com 版权所有 滇ICP备2023002272号-32