1、单位圆上一点从
出发,逆时针方向运动
弧长到达
点,则
的坐标为( )
A.
B.
C.
D.
2、已知集合,那么
( )
A.
B.
C.
D.
3、年
月
日世界军人运动会开幕式在武汉体育中心举行.武汉市某高校为了让学生更好的融入该项重大赛事活动中,决定从报名的
名学生中选派
人参加志愿者服务,选取的方法是将这
名学生编号为
,
,
,
,
,再从随机数表选取第
行和第
行的第
行第
列开始,从左到右依次选取两个数字,则选出的第
名的编号为( )
A.
B.26
C.15
D.
4、函数的零点所在的一个区间是( )
A.
B.
C.
D.
5、函数的零点所在的区间为( )
A.
B.
C.
D.
6、函数的单调递增区间为( )
A.(-∞,-3),(1,+∞) B.(-∞,-2),(2,+∞)
C.(-3,0),(3,+∞) D.(-2,0),(0,2)
7、在等差数列中,
,公差
,则
( )
A.
B.
C.
D.
8、已知函数,记集合
,
,若
,则
的取值范围是( )
A.[0,4]
B.(0,4)
C.[0,4)
D.(0,4]
9、设在定义域
上是单调函数,当
时,都有
,则
的为( )
A.2 B.3 C. D.
10、不等式组表示的平面区域是一个( ).
A. 三角形 B. 梯形 C. 矩形 D. 平行四边形
11、已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球面上,则该圆柱的体积为( )
A. B.
C.
D.
12、设,则使函数
的定义域为
,且该函数为奇函数的
值为( )
A.或
B.或
C.或
D.、
或
13、已知两个正整数集合,
,其中
,
,且
,
中所有元素的和为124,则集合
__________
14、国际数学家大会的会标是以我国古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图),如果小正方形的面积为4,大正方形的面积为100,直角三角形中较小的锐角为,则
.
15、已知,
,若
,则实数
的值为_______.
16、若幂函数在
是单调减函数,则
的取值集合是________.
17、已知,
,若
是
的必要条件,则实数
的取值范围是___________
18、设全集,集合
,若
,则
_____________.
19、设扇形的周长为,半径为
,则扇形的圆心角的弧度数是______.
20、在复数范围内,把多项式分解为一次因式的积:
__________.
21、已知,则
_________.
22、已知是函数
的零点,
是函数
的零点,则
的值为________.
23、设正项数列的前n项和为
,
,且满足___________.给出下列三个条件:
①,
;②
;③
.
请从其中任选一个将题目补充完整,并求解以下问题:
(1)求数列的通项公式;
(2)设,
是数列
的前n项和,求证:
.
24、在平面直角坐标系中,已知圆心在直线
上的圆
经过点
,但不经过坐标原点,并且直线
与圆
相交所得的弦长为4.
(1)求圆的一般方程;
(2)若从点发出的光线经过
轴反射,反射光线刚好通过圆
的圆心,求反射光线所在的直线方程(用一般式表达).
25、已知函数.
(1)求函数的定义域,并判断函数
的奇偶性;
(2)对于,不等式
恒成立,求实数
的取值范围.