得到
  • 汉语词
  • 汉语典q
当前位置 :

屯昌2024-2025学年第二学期期末教学质量检测试题(卷)高三数学

考试时间: 90分钟 满分: 160
题号
评分
*注意事项:
1、填写答题卡的内容用2B铅笔填写
2、提前 xx 分钟收取答题卡
第Ⅰ卷 客观题
第Ⅰ卷的注释
一、选择题 (共20题,共 100分)
  • 1、如果,那么下列不等式一定成立的是(       

    A.

    B.

    C.

    D.

  • 2、已知全集,集合,则图中阴影部分表示的集合为(       

    A.

    B.

    C.

    D.

  • 3、在正项等比数列中,若依次成等差数列,则的公比为

    A.2

    B.

    C.3

    D.

  • 4、德国数学家米勒曾提出最大视角问题,这一问题一般的描述是:已知点边上的两个定点,边上的一个动点,当在何处时,最大?问题的答案是:当且仅当的外接圆与边相切于点时最大,人们称这一命题为米勒定理.已知点的坐标分别是轴正半轴上的一动点.若的最大值为,则实数的值可以为(       

    A.

    B.2

    C.3

    D.4

  • 5、某班科技兴趣小组研究在学校的图书馆顶上安装太阳能板的发电量问题,要测量顶部的面积,将图书馆看成是一个长方体与一个等底的正四棱锥组合而成,经测量长方体的底面正方形的的边长为26米,高为9米,当正四棱锥的顶点在阳光照射下的影子恰好落在底面正方形的对角线的延长线上时,测的光线与底面夹角为,正四棱锥顶点的影子到长方体下底面最近顶点的距离为11.8米,则图书馆顶部的面积大约为(       )平方米(注:

    A.

    B.

    C.

    D.

  • 6、已知集合,则  

    A. B. C. D.

  • 7、已知双曲线虚轴的一个端点到它的一条渐近线的距离为,则该双曲线的离心率为(       

    A.2

    B.3

    C.

    D.

  • 8、已知数列满足,其首项,若数列是单调递增数列,则实数的取值范围是(  

    A. B. C. D.

  • 9、若集合,则(   )

    A.   B.   C.   D.

  • 10、,则

    A. B. C. D.

     

  • 11、若角的终边经过点,且,则实数的值为(       

    A.

    B.

    C.

    D.

  • 12、我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”(大于1的自然数中,除了1和它本身以外不再有其他因数的自然数叫做素数),如36=5+31.在不超过36的素数中,随机选取两个不同的数,其和等于36的概率是(       

    A.

    B.

    C.

    D.

  • 13、著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休如函数fx的图象大致是(  

    A. B.

    C. D.

  • 14、已知集合,则(       )

    A.

    B.

    C.

    D.

  • 15、已知点,圆上的两个不同的点满足,则的最大值为(       

    A.12

    B.18

    C.60

    D.

  • 16、如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,其中俯视图为扇形,则该几何体的体积为

    A.

    B.

    C.

    D.

  • 17、已知是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为(       

    A.

    B.

    C.

    D.

  • 18、已知过点的动直线l与圆C交于AB两点,过AB分别作C的切线,两切线交于点N.若动点,则的最小值为(       

    A.6

    B.7

    C.8

    D.9

  • 19、已知集合,集合,则       

    A.

    B.

    C.

    D.

  • 20、如图,已知分别为正方体的棱的中点,平面交棱于点,则下列结论中正确的是(       

    A.平面平面

    B.截面是直角梯形

    C.直线与直线异面

    D.直线平面

二、填空题 (共6题,共 30分)
  • 21、椭圆、双曲线、抛物线这些圆锥曲线都有焦点,焦点是光线的聚集点.如图1,从椭圆的一个焦点发出的光线,经过椭圆反射后,反射光线经过椭圆的另一个焦点;从双曲线的一个焦点发出的光线,经过双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.如图2,一个光学装置由有公共焦点的椭圆C与双曲线构成,一条光线从发出,依次经过与C的反射,又回到,历时m秒;若将装置中的去掉,则该光线从发出,经过C两次反射后又回到,历时n秒,若C与的离心率之比为,则_____________

  • 22、曲线在点处的切线方程为__________.

  • 23、“双碳”再成今年两会热点,低碳行动引领时尚生活,新能源汽车成为人们代步车的首选.某工厂生产的新能源汽车的某一部件质量指标服从正态分布,检验员根据该部件质量指标将产品分为正品和次品,其中指标的部件为正品,其他为次品,要使次品率不高于,则的一个值可以为__________.(若,则

  • 24、,则______.(用数字作答)

  • 25、如图所示,二面角的平面角的大小为上的两个定点,且,满足与平面所成的角为,且点在平面上的射影的内部(包括边界),则点的轨迹的长度等于_________

  • 26、数列的通项公式为,该数列的前8项和为__________

三、解答题 (共6题,共 30分)
  • 27、如图所示,在三棱柱中,M的中点.

    1)求平面

    2)若平面ABCAB=AC=AA1=2,求点B到平面AB1M的距离.

  • 28、已知焦点在x轴上,中心在原点,离心率为的椭圆经过点,动点AB(不与点M重合)均在椭圆上,且直线的斜率之和为1.

    (1)求椭圆的方程;

    (2)证明直线经过定点,并求这个定点的坐标.

  • 29、已知为公差不为零的等差数列,其中成等比数列, .

    (1)求数列通项公式;

    (2)记,设的前项和为,求最小的正整数,使得.

     

  • 30、已知函数.

    1)求在区间的极值点;

    2)证明:在区间有且只有3个零点,且之和为0.

  • 31、在锐角中,角所对的边分别为.已知.

    (Ⅰ)求

    (Ⅱ)当,且时,求.

  • 32、设实数xy满足,则2x+3y的最大值为______

查看答案
下载试卷
得分 160
题数 32

类型 期末考试
第Ⅰ卷 客观题
一、选择题
二、填空题
三、解答题
范文来(fanwenlai.com)汇总了汉语字典,新华字典,成语字典,组词,词语,在线查字典,中文字典,英汉字典,在线字典,康熙字典等等,是学生查询学习资料的好帮手,是老师教学的好助手。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
Copyright©2009-2021 范文来 fanwenlai.com 版权所有 滇ICP备2023002272号-32