1、如图甲所示的理想变压器,其原线圈接在输出电压如图 乙所示的正弦式交流电源上,副线圈接有阻值为 88Ω的负载电阻 R,原、副线圈匝数之比为 5∶1.电流表、电压表均为理想交流电表。下列说法中正确的是( )
A.电流表的示数为 2.5A
B.电压表的示数约为V
C.原线圈的输入功率为 22W
D.原线圈交电电流的频率为 0.5Hz
2、质子疗法进行治疗,该疗法用一定能量的质子束照射肿瘤杀死癌细胞.现用一直线加速器来加速质子,使其从静止开始被加速到1.0×107m/s.已知加速电场的场强为1.3×105N/C,质子的质量为1.67×10-27kg,电荷量为1.6×10-19C,则下列说法正确的是
A.加速过程中质子电势能增加
B.质子所受到的电场力约为2×10-15N
C.质子加速需要的时间约为8×10-6s
D.加速器加速的直线长度约为4m
3、某铁路安装有一种电磁装置可以向控制中心传输信号,以确定火车的位置和运动状态,其原理是将能产生匀强磁场的磁铁安装在火车首节车厢下面,如图甲所示(俯视图),当它经过安放在两铁轨间的线圈时,线圈便产生一个电信号传输给控制中心。线圈边长分别为和
,匝数为
,线圈和传输线的电阻忽略不计。若火车通过线圈时,控制中心接收到线圈两端的电压信号
与时间
的关系如图乙所示(
、
均为直线),
、
、
、
是运动过程的四个时刻,则火车( )
A.在时间内做匀速直线运动
B.在时间内做匀减速直线运动
C.在时间内加速度大小为
D.在时间内和在
时间内阴影面积相等
4、如图所示,把一个小球放在玻璃漏斗中,晃动漏斗,可以使小球沿光滑的漏斗壁在某一水平面内做匀速圆周运动.此时小球所受到的力有( )
A.重力、支持力
B.重力、支持力,向心力
C.重力、支持力,离心力
D.重力、支持力、向心力、沿漏斗壁的下滑力
5、库仑定律的表达式是( )
A.
B.
C.
D.
6、一种心脏除颤器通过电容器放电完成治疗。在一次模拟治疗中,电容器充电后电压为4.0kV,在2.0ms内完成放电,这次放电通过人体组织的平均电流强度大小为30A,该心脏除颤器中电容器的电容为( )
A.15μF
B.10μF
C.20μF
D.30μF
7、如图所示,在地面上以速度斜向上抛出质量为
可视为质点的物体,抛出后物体落到比地面低
的海平面上。不计空气阻力,当地的重力加速度为
,若以地面为零势能面,则下列说法中正确的是( )
A.重力对物体做的功为
B.物体在海平面上的重力势能为
C.物体在海平面上的动能为
D.物体在海平面上的机械能为
8、倾角为 的斜面上,有质量为m,同一材质制成的均匀光滑金属圆环,其直径 d恰好等于平行金属导轨的内侧宽度。如图,电源提供电流 I,圆环和轨道接触良好。下面的匀强磁场,能使圆环保持静止的是( )
A.磁场方向垂直于斜面向上,磁感应强度大小等于
B.磁场方向垂直于斜面向下,磁感应强度大小等于
C.磁场方向竖直向下,磁感应强度大小等于
D.磁场方向竖直向上,磁感应强度大小等于
9、分子势能随分子间距离
变化的图像(取
趋近于无穷大时
为零),如图所示。将两分子从相距
处由静止释放,仅考虑这两个分子间的作用,则下列说法正确的是( )
A.当时,释放两个分子,它们将开始远离
B.当时,释放两个分子,它们将相互靠近
C.当时,释放两个分子,
时它们的速度最大
D.当时,释放两个分子,它们的加速度先增大后减小
10、矩形线圈在匀强磁场中绕垂直于磁场的轴匀速转动时,产生的感应电动势最大值为50 V,那么该线圈由图示位置(线圈平面与磁场方向平行)转过30°时,线圈中的感应电动势大小为( )
A.
B.
C.
D.
11、如图所示,条形磁铁压在水平的粗糙桌面上,它的正中间上方有一根长直导线L,导线中通有垂直于纸面向里(即与条形磁铁垂直)的电流。若将直导线L沿竖直向上方向缓慢平移,远离条形磁铁,则在这一过程中( )
A.桌面受到的压力将增大
B.桌面受到的压力将减小
C.桌面受到的摩擦力将增大
D.桌面受到的摩擦力将减小
12、如图甲所示,水波传到两板间的空隙发生了明显的衍射,若不改变小孔的尺寸,只改变挡板的位置或方向,如图乙中的(a)、(b)、(c)、(d),则下列判断正确的是( )
A.只有(a)能发生明显衍射
B.只有(a)(b)能发生明显衍射
C.(a)、(b)、(c)、(d)均能发生明显衍射
D.(a)、(b)、(c)、(d)均不能发生明显衍射
13、乒乓球运动的高抛发球是由我国运动员刘玉成于1964年发明的,后成为风世界乒乓球坛的一项发球技术.某运动员在一次练习发球时,手掌张开且伸平,将一质量为2.7g的乒乓球由静止开始竖直向上抛出,抛出后向上运动的最大高度为2.45m,若抛球过程,手掌和球接触时间为5ms,不计空气阻力,则该过程中手掌对球的作用力大小约为
A.0.4N
B.4N
C.40N
D.400N
14、如图所示,带等量异种电荷的两正对平行金属板M、N间存在匀强电场,板长为L(不考虑边界效应)。t=0时刻,M板中点处的粒子源发射两个速度大小为v0的相同粒子,垂直M板向右的粒子,到达N板时速度大小为;平行M板向下的粒子,刚好从N板下端射出。不计重力和粒子间的相互作用,则( )
A.M板电势高于N板电势
B.两个粒子的电势能都增加
C.粒子在两板间的加速度
D.粒子从N板下端射出的时间
15、如图所示,图中曲线表示电场中的一部分电场线的分布,下列说法正确的是( )
A.这个电场可能是负电荷的电场
B.这个电场可能是匀强电场
C.点电荷在A点时的受到的电场力比在点时受到的电场力大
D.负点电荷在点时受到的电场力方向沿
点的切线方向
16、图中虚线所示为某静电场的等势面,相邻等势面间的电势差都相等;实线为一试探电荷仅在电场力作用下的运动轨迹。该试探电荷在M、N两点受到的电场力大小分别为和
,相应的电势能分别为
和
,则( )
A.
B.
C.
D.
17、一个重量为G的物体,在水平拉力F的作用下,一次在光滑水平面上移动x,做功W1,功率P1;另一次在粗糙水平面上移动相同的距离x,做功W2,功率P2。在这两种情况下拉力做功及功率的关系正确的是( )
A.W1=W2,P1>P2
B.W1>W2,P1>P2
C.W1=W2,P1=P2
D.W1>W2,P1=P2
18、从奥斯特发现电流周围存在磁场后,法拉第坚信磁一定能生电。他使用下面装置进行实验研究,把两个线圈绕在同一个铁环上(如图),甲线圈两端A、B接着直流电源,乙线圈两端C、D接电流表。始终没发现“磁生电”现象。主要原因是( )
A.甲线圈中的电流较小,产生的磁场不够强
B.甲线圈中的电流是恒定电流,不会产生磁场
C.乙线圈中的匝数较少,产生的电流很小
D.甲线圈中的电流是恒定电流,产生的是稳恒磁场
19、甲、乙两颗人造卫星绕地球做圆周运动,半径之比为R1:R2=1:4,则它们的运动周期之比和运动速率之比分别为( )
A.T1:T2=8:1,v1:v2=2:1
B.T1:T2=1:8,v1:v2=1:2
C.T1:T2=1:8,v1:v2=2:1
D.T1:T2=8:1,v1:v2=1:2
20、汽车在水平地面转弯时,坐在车里的小云发现车内挂饰偏离了竖直方向,如图所示。设转弯时汽车所受的合外力为F,关于本次转弯,下列图示可能正确的是( )
A.
B.
C.
D.
21、对于功和能的关系,下列说法中正确的是( ).
A.功就是能,能就是功
B.功可以变为能,能可以变为功
C.做功过程就是物体能量的转化过程
D.功是物体能量的量度
22、如图所示为齿轮的传动示意图,大齿轮带动小齿轮转动,大、小齿轮的角速度大小分别为ω1、ω2,两齿轮边缘处的线速度大小分别为v1、v2,则( )
A.ω1<ω2,v1=v2
B.ω1>ω2,v1=v2
C.ω1=ω2,v1>v2
D.ω1=ω2,v1<v2
23、轮船以速度16m/s匀速运动,它所受到的阻力为1.5×107N,发动机的实际功率是
A.9.0×104kW
B.2.4×105kW
C.8.0×104kW
D.8.0×103kW
24、万有引力定律表达式为( )
A.
B.
C.
D.
25、如图所示,100匝的线圈(为表示线圈的绕向,图中只画了两匝)两端A、B与一个电压表相连,线圈内有垂直纸面向里的匀强磁场,线圈中的磁通量按图乙所示的规律变化。
(1)电压表的读数是______V
(2)电压表的正接线柱应该与______(填“A”或“B”)端相接
26、如图,相距为L的平行金属导轨与水平面成角放置,导轨与阻值均为R的两定值电阻
相连,磁感应强度为B的匀强磁场垂直穿过导轨平面,有一质量为m、阻值也为R的导体棒
,以速度v沿导轨匀速下滑,它与导轨间的动摩擦因数为
,则导体棒下滑的速度大小为________,电阻
消耗的热功率为________。
27、完成下列核反应方程,并指出各属于哪一种核反应.
(1)________,是________.
(2)________,是________.
(3)________,是________.
(4)________,是________.
28、某发电站向外输送电能.若输送的总功率恒定,输电电压为U时,输电线电流为I,输电线上损失的功率为.若改为100U输电,则输电线上的电流变为________,输电线上损失的功率变为________。
29、表内是某手机的一些技术参数,根据表中数据,回答下列问题:
手机类型 | 网络模式 | 支持频段 | 电池容量 | 理论通话时间 | 理论待机时间 | 其它使用时间 |
3G手机 智能手机 拍照手机 | GSM WCD MA | 540分钟(2G) 360分钟(3G) | 200小时 | 3G网络时间: 6小时 2G网络时间: 10小时 音乐播放时间: 40小时 |
(1)2G,3G是指第二、第三代数字通信,2G与3G的主要区别是在传输声音和数据的速度上的变化,该手机工作在2G或3G网络时,耗电量比较大的是____________
A.2G网络 B.3G网络
(2)该手机能接受的电磁波的最高频率是________?比电磁波的波长是_______?()
(3)估算该手机待机时的理论待机电流___________。
30、和平利用核能是人类的一个梦想。当海水中氘核充分聚变时,一升海水释放的核能相当于数百升石油完全燃烧放出的化学能。但目前人们大规模利用核聚变还只能在氢弹中使用,氘核和氚核
结合成氦核
的核反应方程为
,若该核反应中释放出的核能以光子的形式辐射出去,该光子的能量为
,已知真空中光速为c,普朗克常量为h,则该光子的动量为_____:核聚变产生的氦核_____,(填“具有”或“不具有”)放射性,所以核聚变比核裂变利用起来更为_____(选填“安全”或“不安全”)。
31、某探究学习小组的同学欲验证“动能定理”,他们在实验室组装了一套如图所示的装置,另外还找到了打点计时器所用的学生电源、导线、复写纸、纸带、滑块、细沙。当滑块连接上纸带,用细线通过滑轮挂上空的小沙桶时,释放小桶,滑块处于静止状态。若你是小组成员,要完成该实验,则:
(1)你认为还需要的实验器材有______。
(2)实验时为了保证滑块受到的合力与沙和沙桶的总重力大小基本相等,沙和沙桶的总质量应满足的条件是_______,实验时首先要做的步骤是_________。
(3)在(2)的基础上,某同学用天平称量滑块的质量M,往沙桶中装入适量的细沙,用天平称出此时沙和沙桶的总质量m,让沙桶带动滑块加速运动,用打点计时器记录其运动情况,在打点计时器打出的纸带上取两点,测出这两点的间距L和这两点的速度大小v1与v2(v1<v2)。则本实验最终要验证的数学表达式为_______。
32、如图所示,平面直角坐标系xOy的第I象限中存在沿y轴负方向的匀强电场,第IV象限以ON为直径的半圆形区域内存在垂直于坐标平面向外的匀强磁场,磁场区域半径为R.一质量为 m、电荷量为q(>0)的带正电粒子,从y轴正半轴上(0,R)的M点,以速度v0沿x轴正方向射入电场,经x轴上x=
R处的P点进入磁场,最后从磁场边界最低点以垂直于y轴的方向射出磁场.不计粒子重力,求:
(1)电场强度的大小E;
(2)磁感应强度的大小B。
33、寻找地外文明一直是科学家们不断努力的目标。为了探测某行星上是否存在生命,科学家们向该行星发射了一颗探测卫星,卫星绕该行星做匀速圆周运动的半径为R,卫星的质量为m,该行星的质量为M,引力常量为G,试求:
(1)该卫星做圆周运动的向心力的大小;
(2)卫星的运行周期。
34、如图所示为交流发电机示意图,匝数为n=100匝的矩形线圈,边长分别为a=10cm和b=20cm,内阻为r=5Ω,在磁感应强度B=0.5T的匀强磁场中绕OO′轴以ω=50rad/s的角速度匀速转动,转动开始时线圈平面与磁场方向平行,线圈通过电刷和外部R=20Ω的电阻相接。求电键S合上后,
(1)写出线圈内产生的交变电动势瞬时值的表达式;
(2)电压表和电流表示数;
(3)电阻R上所消耗的电功率;
(4)从计时开始,线圈转过90°角的过程中,通过外电阻R的电量。
35、如图所示,电场中A点的电场强度E=2.0×104N/C。将电荷量q=+2.0×10-8C的点电荷放在电场中的A点。
(1)求该点电荷在A点所受静电力F的大小;
(2)该点电荷在A点所受静电力F的方向(写向左或向右)。
36、如图所示,在倾角为θ=30°的光滑斜面MN底端固定一个被压缩且锁定的轻弹簧,轻弹簧的上端静止放一质量m=2kg的滑块,且滑块与斜面顶端N点相距x=0.10m。现将弹簧解除锁定,滑块离开弹簧后经N点离开斜面,恰水平飞上顺时针始终匀速转动的传送带,已知传送带水平放置且足够长,传送带上端距N点所在水平面高度为h=0.20m,滑块A与传送带间的动摩擦因数(g取10m/s2)。
(1)弹簧锁定时储存的弹性势能;
(2)若传送带速度为m/s,求滑块飞上传送带后因摩擦产生的内能;
(3)传送带右端竖直固定半径R=0.1m的光滑半圆轨道,且轨道下端恰好与传送带相切,为使滑块能沿半圆轨道运动而不脱离半圆轨道,求传送带速度应当满足的条件。