1、下列计算正确的是( )
A.
B.
C.
D.
2、几何体在平面P的正投影,取决于( )
①几何体形状;②投影面与几何体的位置关系;③投影面P的大小.
A. ①② B. ①③ C. ②③ D. ①②③
3、一个空心的圆柱如图所示,那么它的主视图是( )
A. B.
C.
D.
4、使分式有意义的x的取值范围为( )
A. B.
C.
D.
5、下列图形中,既是中心对称图形又是轴对称图形的是( )
A.
B.
C.
D.
6、明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有( )两.(注:明代时1斤两,故有“半斤八两”这个成语)
A.45
B.46
C.47
D.48
7、如图,▱ABCD的周长为32cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为 ( )
A.8cm
B.24cm
C.10cm
D.16cm
8、如图,在△ABC中,EFBC,AB=3AE,若S四边形BCFE=16,则S△ABC=( )
A.16
B.18
C.20
D.4
9、《九章算术》中“盈不足术”有这样的问题:“今有共买羊,人出六,不足四十五;人出八,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出元,则差
元;每人出
元,则差
元.求人数和羊价各是多少?设买羊人数为
人,则根据题意可列方程为( )
A.
B.
C.
D.
10、餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )
A.5×1010千克 B.50×109千克 C.5×109千克 D.0.5×1011千克
11、如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏东60°方向行驶12千米至B地,再沿北偏西45°方向行驶一段距离到达古镇C,小明发现古镇C恰好在A地的正北方向,则B,C两地的距离为_____千米.(结果保留根号)
12、-3的相反数是 .
13、如图,点A在双曲线y= (x>0)上,过点A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于点B.当AC=1时,△ABC的周长为________.
14、如图,将△ABC绕点C顺时针旋转,使得点B落在AB边上的点D处,此时点A的对应点E恰好落在BC边的延长线上,若∠B=50°,则∠A的度数为_____.
15、一个y关于x的函数同时满足两个条件:(1)图像经过点(-3,2);(2)当x>0时,y随x的增大而增大,这个函数解析式可以为 .(写出一个即可)
16、如图,在矩形中,
.将
向内翻折,点A落在
上,记为
,折痕为
.若将
沿
向内翻折,点B恰好落在
上,记为
,则
_____,
______.
17、如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中点A(-1,0),点C(0,5),点D(1,8)都在抛物线上,已知M为抛物线的顶点.
(1)求抛物线的表达式;
(2)求△MCB的面积;
(3)根据图形直接写出使直线MC表示的一次函数值大于二次函数值的x的取值范围.
18、钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A,B的距离,如图2,我勘测飞机在距海平面垂直高度为1公里的点C处,测得端点A的俯角为45°,然后沿着平行于AB的方向飞行3.2公里到点D,并测得端点B的俯角为37°,求钓鱼岛两端AB的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41)
19、为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.
(1)请问有几种开发建设方案?
(2)哪种建设方案投入资金最少?最少资金是多少万元?
(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.
20、如果用一根很长的绳子沿着地球赤道绕1圈,然后把绳子放长30m,想象一下,高度为4米的大象能否从绳圈与地球赤道之间的缝隙穿过?
21、化简:
22、如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线相交于点E.已知AB=2DE,∠E=18°.试求∠AOC的度数.
23、(8分)如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于点D,过点D作DE⊥MN于点E.
(1)求证:DE是⊙O的切线;
(2)若DE=6cm,AE=3cm,求⊙O的半径.
24、定义:点P(a,b)关于原点的对称点为P′,以PP′为边作等边△PP′C,则称点C为P的“等边对称点”;
(1)若P(1,3),求点P的“等边对称点”的坐标.
(2)平面内有一点P(1,2),若它其中的一个“等边对称点”C在第四象限时,请求此C点的坐标;
(3)若P点是双曲线y=(x>0)上一动点,当点P的“等边对称点”点C在第四象限时,
①如图(1),请问点C是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.
②如图(2),已知点A (1,2),B (2,1),点G是线段AB上的动点,点F在y轴上,若以A、G、F、C这四个点为顶点的四边形是平行四边形时,求点C的纵坐标yc的取值范围.