1、若在实数范围内有意义,则x的取值范围是( )
A.x≠3
B.x>且x≠3
C.x≥2
D.x≥且x≠3
2、如图,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是【 】
A.2cm B.4
cm C.8
cm D.16
cm
3、如图是由个完全相同的小正方形搭成的几何体,如果将小正方体
放到小正方体
的正上方,则它的( )
A.主视图会发生改变
B.俯视图会发生改变
C.左视图会发生改变
D.三种视图都会发生改变
4、估计的值应在( )
A.2和3之间
B.3和4之间
C.4和5之间
D.5和6之间
5、某市政工程队准备修建一条长1200米的污水处理管道.在修建完400米后,为了能赶在汛期前完成,采用新技术,工作效率比原来提升了25%.结果比原计划提前4天完成任务.设原计划每天修建管道x米,依题意列方程得( )
A.
B.
C.
D.
6、某商贩同时以120元卖出两双皮鞋,其中一双亏本,另一双盈利
,在这次买卖中,该商贩盈亏情况是
A. 不亏不盈 B. 盈利10元 C. 亏本10元 D. 无法确定
7、函数y=中自变量x的取值范围是( )
A. x>2 B. x≥2 C. x≤2 D. x≠2
8、如图,点A,B,C都在上,且点C在弦
所对的优弧上,如果
,那么
的度数是( )
A.
B.
C.
D.
9、如图,,且
,则
与
的相似比为( )
A. B.
C.
D.
10、将二次函数y的图象先向下平移2个单位,再把所得图象以原点为中心,旋转180°,所得图象的表达式正确的是( )
A.y=﹣3x2﹣2
B.y=3x2+2
C.
D.
11、如图,在平面直角坐标系中,直线分别交 x 轴, y 轴于 A, B两点,点 P(m, 1)在△AOB的形内(不包含边界),则m的值可能是__________.(写一个即可)
12、因式分解:4ax2-a=____________
13、某班学生分组做抛掷瓶盖实验,各组实验结果如下表:
根据表中的信息,估计掷一枚这样的瓶盖,落地后盖面朝上的概率为______.(精确到0.01)
14、如图,矩形ABCD中,AB=6,BC=9,以D为圆心,3为半径作⊙D,E为⊙D上一动点,连接AE,以AE为直角边作Rt△AEF,使∠EAF=90°,tan∠AEF= ,则点F与点C的最小距离为_____.
15、商店里某套衣服原本售价为400元每套,经过连续两次降价后,现价为每套256元,假设两次降价的百分率都为x,根据题意可列方程为____.
16、等腰三角形ABC中,AB=AC,D、E分别是AC、AB上两点,连结BD、CE,BD=CE,且BC>BD,∠A=48°,∠BCE=36°,则∠ADB的度数等于________.
17、如图, 是⊙
的直径,
是⊙
的切线,
为切点,
交⊙
于点
.
(Ⅰ)若为
的中点,证明:
是⊙
的切线.
(Ⅱ)若,
,求
的度数.
18、如图1,在正方形ABCD中,AB=10,点O,E在边CD上,且CE=2,DO=3,以点O为圆心,OE为半径在其左侧作半圆O,分别交AD于点G,交CD的延长线于点F.
(1)AG= ;
(2)如图2,将半圆O绕点E逆时针旋转α(0°<α<180°),点O的对应点为O′,点F的对应点为F′,设M为半圆O′上一点.
①当点F′落在AD边上时,求点M与线段BC之间的最短距离;
②当半圆O′交BC于P,R两点时,若的长为
π,求此时半圆O′与正方形ABCD重叠部分的面积;
③当半圆O′与正方形ABCD的边相切时,设切点为N,直接写出tan∠END的值.
19、(本题满分10分)(1)问题发现
如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE,
填空:①∠AEB的度数为 ;
②线段AD、BE之间的数量关系是 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=900, 点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请判断∠AEB的度数及线段CM、AE、BE之间的数量关系,并说明理由.
(3)解决问题如图3,在正方形ABCD中,CD=.若点P满足PD=1,且∠BPD=900,请直接写出点A到BP的距离.
20、先化简,再求代数式的值,其中
.
21、若x满足(x-4) (x-9)=6,求(x-4)2+(x-9)2的值.
解:设x-4=a,x-9=b,则(x-4)(x-9)=ab=6,a-b=(x-4)-(x-9)=5,
∴(x-4)2+(x-9)2=a2+b2=(a-b)2+2ab=52+2×6=37
请仿照上面的方法求解下面问题:
(1)若x满足(x-2)(x-5)=10,求(x-2)2 + (x-5)2的值
(2)已知正方形ABCD的边长为x,E,F分别是AD、DC上的点,且AE=1,CF=3,长方形EMFD的面积是15,分别以MF、DF作正方形,求阴影部分的面积.
22、已知:中,
是
的角平分线。
(1)如图1,若,写出
三者之间满足的关系;
(2)如图2,求证:;
(3)如图3,若,求证:
.
23、实践操作:如图,△ABC是直角三角形,∠ACB=90°,利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)
①作∠BAC的平分线,交BC于点O;②以点O为圆心,OC为半径作圆.
综合运用:在你所作的图中,
(1)直线AB与⊙O的位置关系是 ;
(2)证明: ;
(3)若AC=5,BC=12,求⊙O的半径.
24、某天,甲车间工人加工零件,工作中有一次停产检修机器,然后以原来的工作效率继续加工,由于任务紧急,乙车间加入与甲车间一起生产零件,两车间各自加工零件的数量y(个)与甲车间加工时间t(时)之间的函数图象如图所示.
(1)求乙车间加工零件的数量y与甲车间加工时间t之间的函数关系式,并写出t的取值范围.
(2)求甲车间加工零件总量a.
(3)当甲、乙两车间加工零件总数量为320个时,直接写出t的值.