1、从标有1到9序号的9张卡片中任意抽取一张,抽到序号是偶数的概率是( )
A. B.
C.
D.
2、融侨半岛某文具店购入一批笔袋进行销售,进价为每个20元,当售价为每个50元时,每星期可以卖出100个,现需降价处理:售价每降价3元,每星期可以多卖出15个,店里每星期笔袋的利润要达到3125元.若设店主把每个笔袋售价降低x元,则可列方程为( )
A. (30+x)(100-15x)=3125 B. (30﹣x)(100+15x)=3125
C. (30+x)(100-5x)=3125 D. (30﹣x)(100+5x)=3125
3、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.48,S丁2=0.42,则四人中成绩最稳定的是( )
A. 甲 B. 乙 C. 丙 D. 丁
4、如图,在梯形中,
,对角线
交于点
是梯形
的中位线,
与
分别交于点
,如果
的面积为
,那么梯形
的面积为( )
A.
B.
C.
D.
5、如图,AB为⊙O的直径,弦于点E,已知
,
,则CD的长为( )
A.8 B.12 C.16 D.20
6、如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为( )
A.20cm B.15cm C.10cm D.随直线MN的变化而变化
7、若x=1是方程x2+nx+m=0的根,则m+n的值是( )
A. 1 B. -1 C. 2 D. -2
8、若将抛物线y=x2向下平移1个单位,则所得抛物线对应的函数关系式为( )
A.y=(x﹣1)2
B.y=(x+1)2
C.y=x2﹣1
D.y=x2+1
9、化简的结果是( )
A.
B.
C.
D.
10、方程的解为( )
A.
B.
C.0
D.
11、甲袋中装有红、白两球,乙袋中装有两个红球和一个白球,两袋的球除颜色不同外其他都相同,如果分别从两个袋中各摸一球,则从两个袋中摸出的球都是白球的概率是_________.
12、因式分解: = .
13、将方程x2﹣4x=2配方成(x+a)2=b(b≥0)的形式时,则ba=___.
14、因式分解:________.
15、经过点的反比例函数的解析式为__________.
16、如图,,正方形
,正方形
,正方形
,正方形
,…,的顶点
,在射线
上,顶点
,在射线
上,连接
交
于点
,连接
交
于点
,连接
交
于点
,…,连接
交
于点
,连接
交
于点
,…,按照这个规律进行下去,设
与
的面积之和为
与
的面积之和为
与
的面积之和为
,…,若
,则
等于__________.(用含有正整数
的式子表示)
17、如图,已知抛物线y=x2+bx+c经过A(﹣1,0),B(3,0)两点.
(1)求抛物线的解析式及顶点C坐标;
(2)直线l交抛物线于点D(﹣2,m),E(m,n).若点P在抛物线上且在直线l下方(不与点D,E重合),求点P纵坐标的取值范围.
18、(知识回顾)我们学习完《直角三角形的边角关系》之后知道,在中,当锐角
确定时,锐角
的三角函数值也随之确定.结合课本所学知识,请你填空:
______;
______;
______.
(深入探究)定义:在中,
,我们把
的对边与
的对边的比叫做
的邻弦,记作
,即:
.请解答下列问题:已知:在
中,
.
(1)如图①,若,求
的值;
(2)如图②,若,求
的度数;
(3)若是锐角,请你直接写出
与
的数量关系.
19、解一元二次方程:.
20、如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,∠DAB=∠B=30°.
(1)求证:直线BD与⊙O相切;
(2)连接CD,若CD=5,求AB的长.
21、如图,在中,
是
边上一点,
的平分线交
于点
,且
.求证:
.
22、如图,在平面直角坐标系中,一次函数的图象与二次函数
的图象交于
、
两点.
(1)求与
的函数关系式;
(2)直接写出当时,
的取值范围;
(3)点为一次函数
图象上一点,点
的横坐标为
,若将点
向右平移2个单位,再向上平移4个单位后刚好落在二次函数
的图象上,求
的值.
23、已知a,b是一元二次方程x2-x-2=0的两根,求a+b的值
24、为提高学生的爱国意识,陶冶爱国情操,某中学举行了以“厉害了,我的国”为主题的书法绘画大赛,该校九年级共有三个班都参加了这次活动,三个班根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分100分)如下表所示:
收集数据:
| 决赛成绩(单位:分) |
九年级1班 | 80 86 88 80 88 99 80 74 91 89 |
九年级2班 | 85 85 87 97 85 76 88 77 87 88 |
九年级3班 | 82 80 78 78 81 96 97 87 92 84 |
数据(1)请填写下表:
| 平均数(分) | 众数(分) | 中位数(分) |
九年级1班 | 85.5 |
| 87 |
九年级2班 | 85.5 | 85 |
|
九年级3班 |
| 78 | 83 |
得出结论:
(2)如果在每个班级参加决赛的选手中分别选出3人参加总决赛,你认为哪个班级的实力更强一些?请简要说明理由.