1、a的相反数是( )
A. |a| B. C. -a D.
2、如图是某几何体的视图,该几何体是( )
A.圆柱
B.球
C.三棱柱
D.长方体
3、在一个不透明的袋子中放有个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则
的值约为( )
A.10 B.15 C.20 D.24
4、在阳光照射下的升旗广场的旗杆从上午九点到十一点的影子长的变化规律为( )
A.逐渐变长
B.逐渐变短
C.影子长度不变
D.影子长短变化无规律
5、从河南省工商联获悉,自新型冠状病毒引发的肺炎疫情出现以来,截止2月13日下午6点,全省民营企业、商会及企业家个人累计7412家(人),共向武汉等疫情严重地区及我省定点防治新冠肺炎的医院、政府部门、执勤卡点等捐赠物款约10.1亿元.10.1亿用科学记数法表示应为( )
A.
B.
C.
D.
6、定义新运算:a⊕b=,则函数y=2⊕x(x≠0)的图象大致是( )
A.
B.
C.
D.
7、下列标志中,只是中心对称图形,不是轴对称图形的是( )
A. B.
C.
D.
8、如图,点A的坐标为(1,3),点B在x轴上,把沿x轴向右平移到
,若四边形ABDC的面积为9,则点C的坐标为( )
A.(1,4)
B.(3,4)
C.(3,3)
D.(4,3)
9、某物体三视图如图,则该物体形状可能是( )
A.长方体
B.圆锥体
C.立方体
D.圆柱体
10、下列美丽的图案中,不是轴对称图形的是( )
A.
B.
C.
D.
11、某型号的飞机的机翼形状如图所示,根据图中的数据,可求AB的长度为 ______________m.(,结果保留两位小数)
12、如图,平行四边形中,连接
,点
为对称中心,点
在
上,若
,
,
,
,则
______.
13、如图,在Rt△OBC中,OB与x轴正半轴重合,∠OBC=90°,且OC=2,BC=,将△OBC绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB1=OC,得到△OB1C1,将△OB1C1绕原点O逆时针旋转60°再将其各边扩大为原来的2倍,使OB2=OC,得到△OB2C2,…,如此继续下去,得到△OB2016C2016,则点C2016的坐标为__.
14、如图所示,所有四边形都是正方形,所有的三角形都是直角三角形,其中正方形D,C,A,B的面积分别为1,2,3,4,则正方形G的面积为________.
15、如果y=(k﹣3)x2+k(x﹣3)是二次函数,那么k需满足的条件是____.
16、已知扇形的弧长为4π,圆心角为120°,则它的半径为_____.
17、如图,△ABC中,A(﹣4,4),B(﹣4,﹣2),C(﹣2,2).
(1)请画出将△ABC向右平移8个单位长度后的△A1BlC1;
(2)求出∠A1BlC1的余弦值;
(3)以O为位似中心,将△A1BlC1缩小为原来的,得到△A2B2C2,请在y轴右侧画出△A2B2C2.
18、如图,PA与⊙O相切于点A,过点A作AB⊥OP,垂足为C,交⊙O于点B.连接PB,AO,并延长AO交⊙O于点D,与PB的延长线交于点E.
(1)求证:PB是⊙O的切线;
(2)若OC=3,AC=4,求PB的长.
19、计算:
20、二次函数,其中
.
(1)求该二次函数的对称轴方程;
(2)过动点C(0, )作直线
⊥y轴.
① 当直线与抛物线只有一个公共点时, 求
与
的函数关系;
② 若抛物线与x轴有两个交点,将抛物线在轴下方的部分沿
轴翻折,图象的其余部分保持不变,得到一个新的图象. 当
=7时,直线
与新的图象恰好有三个公共点,求此时
的值;
(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求的取值范围.
21、如图,已知二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,6),对称轴为直线x=2,求二次函数解析式并写出图象最低点坐标.
22、某产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点在原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为w万元.(毛利润=销售额-生产费用)
(1)请直接写出y与x以及z与x之间的函数关系式;
(2)求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?
(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?
23、计算:
24、商场购进某种新商品的每件进价为120元,在试销期间发现,当每件商品的售价为130元时,每天可销售70件;当每件商品的售价高于130元时,每涨价1元,日销售量就减少1件,据此规律,请回答下列问题.
(1)当每件商品的售价为140元时,每天可销售______件商品,商场每天可盈利______元;
(2)设销售价定为x元时,商品每天可销售______件,每件盈利______元;
(3)在销售正常的情况下,每件商品的销售价定为多少时,商场每天盈利达到1500元.