1、将等腰直角三角形AOB按如图所示放置,然后绕点O逆时针旋转90°至的位置,点B的横坐标为2,则点
的坐标为( )
A.(1,1)
B.()
C.(-1,1)
D.()
2、在△ABC中,∠C=90°,cosA=,那么tanA等于 ( ▲ )
A. B.
C.
D.
3、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有( )
A.3个 B.2个 C.1个 D.0个
4、如图,菱形ABCD的周长为20cm,DE⊥AB,垂足 为E, ,则下列结论中:①DE=3cm;②EB=1cm;③
.正确的个数为( )
A. 0个 B. 1个 C. 2个 D. 3个
5、下列式子中,正确的是( ).
A.
B.
C.
D.
6、某几何体的三视图如图所示,则这个几何体是( )
A. 球 B. 圆柱 C. 圆锥 D. 三棱柱
7、已知A地的海拔高度为﹣36米,B地比A地高20米,则B地的海拔高度为( )
A.16米 B.20米 C.﹣16米 D.﹣56米
8、小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡、下坡的速度仍保持不变,那么小亮从学校骑车回家用的时间是( )
A.37.2分钟 B.48分钟 C.30分钟 D.33分钟
9、甲、乙两车同时从地出发,沿同一路线各自匀速向
地行驶,甲到达
地停留1小时后按原路以另一速度匀速返回,直到与乙车相遇.乙车的速度为每小时60千米.两车之间的距离
(千米)与乙车行驶时间
(小时)之间的函数图象如图所示,则下列结论错误的是( )
A.行驶3小时后,两车相距120千米
B.甲车从到
的速度为100千米/小时
C.甲车返回是行驶的速度为95千米/小时
D.、
两地之间的距离为300千米
10、如图,在矩形ABCD中,AB=5,AD=3,动点P在直线AB上方,且满足S△PABS:矩形ABCD=1:3,则使△PAB为直角三角形的点P有( )个
A. 1 B. 2 C. 3 D. 4
11、如图,电路中,随机闭合开关中的两个,不能点亮灯泡的概率为______.
12、不等式解集是______.
13、关于x的一元二次方程x2+mx+9=0有两个相等的实数根,则m的值是__.
14、如图,以O为位似中心,将五边形ABCDE放大得到五边形A′B′C′D′E′,已知OA=10 cm,OA′=30 cm,若S五边形A′B′C′D′E′=27 cm2,则S五边形ABCDE=__________.
15、如图,四边形ABCD,CEFG都是正方形,点G在边CD上,它们的面积之差为51cm2,且,则DG的长为_______cm.
16、不等式组的解集在数轴上表示正确的是( )
A.
B.
C.
D.
17、某葡萄种植大镇,果农广宇为了了解甲、乙两个大棚里所种植的“夏黑”葡萄的生长情况.现从两个大棚里分别随机抽取了20串葡萄,对它们的重量(单位:)进行整理、描述和分析,下面给出了部分信息:(葡萄重量用
表示,共分为五组,
组:
,
组:
,C组:
,
组:
,
组:
)
甲大棚20串葡萄的重量分别为:
545,560,414,565,640,560,590,542,425,560,
630,580,466,530,487,625,490,513,508,540,
乙大棚20串葡萄的重量在组中的数据是:520,545,530,520,533,522.
甲、乙两大棚随机抽取的葡萄的重量数据统计表如下:
| 甲大棚 | 乙大棚 |
平均重量 | 538.5 | 536.6 |
中位数 | 543.5 |
|
众数 |
| 562 |
方差 | 3840.7 | 3032.5 |
根据以上信息,解答下列问题:
(1)请直接写出上述统计表中的值:
_________,
____________;
(2)若甲、乙两大棚的葡萄总共有2400串,请估计甲、乙两大棚重量在600克及以上的葡萄共有多少串?
(3)本次抽取的共40串葡萄中,重量在/串及以上的视为“佳品葡萄”,果农广宇在“佳品葡萄”中任选2串参加镇里举行的葡萄大赛,求这2串葡萄全部来自甲大棚的概率.
18、计算:.
19、某校为了解七、八年级学生对“新冠”传播与防治知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理和分析.部分信息如下:
a.七年级成绩频数分布直方图:
b.七年级成绩在70m
80这一组的是:
70,72,72,75,76,76,77,77,78,79,79
c.七、八年级成绩的平均数、中位数如下:
年级 | 平均数 | 中位数 |
七 | 76.9 | a |
八 | 79.2 | 79.5 |
根据以上信息,回答下列问题:
(1)在这次测试中,七年级在70分以上的有 人,表格中a的值为 ;
(2)在这次测试中,七年级学生甲与八年级学生乙的成绩都是79分,请判断两位学生在各自年级的排名谁更靠前;
(3)该校七年级学生有500人,假设全部参加此次测试,请你估计七年级成绩超过平均数76.9分的人数.
20、 如图,点D在双曲线上,AD垂直x轴,垂足为A,点C在AD上,CB平行于x轴交双曲线于点B,直线AB与y轴相交于点F,已知AC:AD=1:3,点C的坐标为(3,2).
(1)求反比例函数和一次函数的表达式;
(2)直接写出反比例函数值大于一次函数值时自变量的取值范围.
21、已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0)、B(x2,0),与y轴交于点C,且O,C两点之间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t上.
(1)求点C的坐标;
(2)当y1随着x的增大而增大时,求自变量x的取值范围;
(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.
22、如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫格点,△ABC的顶点都在格点上(保留作图连线痕迹),并回答问题.
(1)在BC的右边找格点D,连AD,使AD平分∠BAC.
(2)若AD与BC交于E,直接写出的值.
(3)找格点F,连EF,使EF⊥AB于H.
(4)在AC上找点G,连EG,使EG∥AB.
23、已知二次函数y=a(x﹣1)2+k的图象与x轴交于A,B两点,AB=4,与y轴交于C点,E为抛物线的顶点,∠ECO=135°.
(1)求二次函数的解析式;
(2)若P在第四象限的抛物线上,连接AE交y轴于点M,连接PE交x轴于点N,连接MN,且S△EAP=3S△EMN,求点P的坐标;
(3)过直线BC上两点P,Q(P在Q的左边)作y轴的平行线,分别交抛物线于N,M,若四边形PQMN为菱形,求直线MN的解析式.
24、濮阳龙碑是纪念中华第一龙特设的纪念碑.雄伟高大的龙碑展现了濮阳龙乡的古老文明和现代化城市的勃勃雄姿.某实验学校九年级数学兴趣小组测量龙碑的高度(示意图如图所示),测得底座CE=2.5m,在平地上的B处测得石碑的底部E的仰角为10°,向前走1m到达点D处,测得石碑的顶端A的仰角为60°,求石碑AE的高度.(精确到0.1m;参考数据:sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,≈1.73)