1、在平面直角坐标系中,点A的坐标是(2,1),将点A绕原点O顺时针旋转90°得到点A',则点A'的坐标是( )
A.
B.
C.
D.
2、如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有( )个.
A. 1 B. 2 C. 3 D. 4
3、下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B.
C.
D.
4、如图是由一些相同的小正方体组成的几何体的三视图,则组成这个几何体的小正方体个数最多为( )
A. 7 B. 8
C. 9 D. 10
5、古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(
,称为黄金比例),如图,著名的“断臂维纳斯”便是如此,此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
,若某人的身材满足上述两个黄金比例,且头顶至咽喉的长度为
,则其升高可能是( )
A.
B.
C.
D.
6、如图,在ABC中,AC>BC,∠ACB为钝角.按下列步骤作图:
①在边BC、AB上,分别截取BD、BE,使BD=BE;
②以点C为圆心,BD长为半径作圆弧,交边AC于点F;
③以点F为圆心,DE长为半径作圆弧,交②中所作的圆弧于点G;
④作射线CG交边AB于点H.
下列说法不正确的是( )
A.∠ACH=∠B B.∠AHC=∠ACB C.∠CHB=∠A+∠B D.∠CHB=∠HCB
7、如图,,
,
,则
的长为( )
A.
B.
C.
D.
8、二次函数y=-x ²+
x+2的图象如图所示,当-1≤x≤0时,该函数的最大值是( )
A. 3.125 B. 4 C. 2 D. 0
9、为了了解某校七年级1000名学生的每天的阅读时间,从中抽取100名学生进行调查,下列说法正确的是( )
A.1000名学生是总体
B.每个学生是个体
C.抽取的100名学生是一个样本
D.每个学生的每天阅读时间是个体
10、实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是( )
A.
B.b− c>0
C.ab>0
D.a+c>0
11、如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(-2,3),AD=5,若反比例函数y=(k>0,x>0)的图象经过点B,则k的值为________.
12、如图28-1-2-3,在高为2米,坡角为30°的楼梯表面铺地毯,地毯的长度至少需_______米.(精确到0.1米)
13、如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一个交点分别为M、N,如果点A与点B,点M与点N都关于原点O成中心对称,则抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是___________
14、如图,点O是游乐园摩天轮的圆心,其半径OA垂直水平地面,在地面C点处测得点A的仰角为,测得点O的仰角为
,已知
,则点C到AO所在直线的距离约是________m(结果根据四舍五入法精确到个位,
,
).
15、计算的结果是_____.
16、如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心,BC的长为半径画弧,点P为菱形内一动点,连接PA,PC.则阴影部分周长的最小值为______.
17、探究一,模型再现:m条直线最多可以把平面分割成多少个部分?
如图1,很明显,平面中画出1条直线时,会得到1+1=2个部分;所以,1条直线最多可以把平面分割成2个部分;
如图2,平面中画出第2条直线时,新增的一条直线与已知的1条直线最多有1个交点,这个交点会把新增的这条直线分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2条直线最多可以把平面分割成4个部分;
如图3,平面中画出第3条直线时,新增的一条直线与已知的2条直线最多有2个交点,这2个交点会把新增的这条直线分成3部分,从而多出3个部分,即总共会得到1+1+2+3=7个部分,所以,3条直线最多可以把平面分割成7个部分;
平面中画出第4条直线时,新增的一条直线与已知的3条直线最多有3个交点,这3个交点会把新增的这条直线分成4部分,从而多出4个部分,即总共会得到1+1+2+3+4=11个部分,所以,4条直线最多可以把平面分割成11个部分;……
探究二,类比迁移:n个圆最多可以把平面分割成多少个部分?
如图4,很明显,平面中画出1个圆时,会得到1+1=2个部分;所以,1个圆最多可以把平面分割成2个部分;
如图5,平面中画出第2个圆时,新增的一个圆与已知的1个圆最多有2个交点,这2个交点会把新增的这个圆分成2部分,从而多出2个部分,即总共会得到1+1+2=4个部分,所以,2个圆最多可以把平面分割成4个部分;
如图6,平面中画出第3个圆时,新增的一个圆与已知的2个圆最多有4个交点,这4个交点会把新增的这个圆分成4部分,从而多出4个部分,即总共会得到1+1+2+4=8个部分,……
平面中画出第4个圆时,新增的一个圆与已知的3个圆最多有6个交点,这6个交点会把新增的这个圆分成6部分,从而多出6个部分,即总共会得到1+1+2+4+6=14个部分,……
(1)5条直线最多可以把平面分割成______个部分;
(2)m条直线最多可以把平面分割成______个部分(用m的代数式表示);
(3)5个圆最多可以把平面分割成______个部分;
(4)n个圆最多可以把平面分割成______个部分(用n的代数式表示);
(5)如果n个圆最多可以把平面分割成508个部分,求n的值(要求写出解答过程);
(6)5条直线和1个圆最多可以把平面分割成______个部分;
(7)m条直线和n个圆最多可以把平面分割成______个部分(用m、n的代数式表示).
18、在平面直角坐标系中,O为原点,点,点B在第一象限,
,C为
的中点,
.
(1)如图①,求点B的坐标;
(2)将沿x轴向右平移得
,点O,A,C的对应点分别为
.设
,
与
重叠部分的面积为S.
①如图②,当与
重叠部分为四边形时,
与
相交于点D,
与
相交于点E,试用含有t的式子表示S,并直接写出t的取值范围;
②当时,求t的值(直接写出结果即可).
19、如图,在中,
平分
交
于
,作
交
于点
,作
交
于点
.
(1)求证:四边形是菱形;
(2)若,
,
,求
的长.
20、已知方程的解为k,请用配方法解关于x的方程
.
21、已知抛物线y=ax2+bx经过点(2,8),(4,8) .
(1)求抛物线的解析式;
(2)若点P(x1,y1),Q(x2,y1)均在该抛物线上,且x1< x2≤4,求的取值范围;
(3)若点A为抛物线上的动点,点B(3,7),则以线段AB为直径的圆截直线y=所得弦的长是否为定值?若是,求出它的值;若不是,请说明理由.
22、(1)解方程:=1﹣
;
(2)解不等式组:.
23、有一边长为3的等腰三角形,它的另两边长分别是关于x的方程的两根,求k的值.
24、已知抛物线y=x2+bx+c与x轴交于点A(4,﹣5).
(1)如图,过点A分别向x轴、y轴作垂线,垂足分别为B、C,得到矩形ABOC,且抛物线经过点C.
①求抛物线的解析式.
②将抛物线沿直线x=m(2>m>0)翻折,分别交线段OB、AC于D,E两点.若直线DE刚好平分矩形ABOC的面积,求m的值.
(2)将抛物线旋转180°,使点A的对应点为A1(m﹣2,n﹣4),其中m≤2.若旋转后的抛物线仍然经过点A,求旋转后的抛物线顶点所能达到最低点时的坐标.