1、如图,在平面直角坐标系中点A的坐标为(0,6),点B的坐标为(﹣,5),将△AOB沿x轴向左平移得到△A′O′B′,点A的对应点A′落在直线y=﹣
x上,则点B的对应点B′的坐标为( )
A.(﹣8,6)
B.(﹣,5)
C.(﹣,5)
D.(﹣8,5)
2、若关于x的二次函数y=kx2+2x﹣1的图象与x轴仅有一个公共点,则k的取值范围是( ).
A.k=0 B.k=﹣1 C.k>﹣1 D.k≠0且k=﹣1
3、关于的一元二次方程
的根的情况是( )
A.有两个相等的实数根 B.有两个不相等的实数根
C.没有实数根 D.无法确定
4、 下列说法正确的是( )
A.为了解我国中学生课外阅读的情况,应采取全面调查的方式
B.掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件
C.抛掷一枚硬币100次,一定有50次“正面朝上”
D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定
5、如图,某游乐场一山顶滑梯的高为,滑梯的坡角为
,那么滑梯长
为( )
A.
B.
C.
D.
6、如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是( )
A.﹣2<m<
B.﹣3<m<﹣
C.﹣3<m<﹣2
D.﹣3<m<﹣
7、下列图形相似的是 ( )
(1)放大镜下的图片与原来的图片;(2)幻灯的底片与投影在屏幕上的图象;(3)天空中两朵白云的照片;(4)卫星上拍摄的长城照片与相机拍摄的长城照片.
A.4组 B.3组 C.2组 D.1组
8、下列图形中,即是轴对称图形,又是中心对称图形的是( )
A.
B.
C.
D.
9、已知,如图2菱形ABCD四个顶点都在坐标轴上,对角线AC、BD交于原点O,DF垂直AB交AC于点G,反比例函数,经过线段DC的中点E,若BD=4,则AG的长为( )
A. B.
+2 C.2
+1 D.
+1
10、下面立体图形中,从正面、侧面、上面看,都不能看到长方形的是( )
A.
B.
C.
D.
11、菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=,则点B的坐标为_______
12、已知二次函数y=ax2+bx+c(a,b,c是常数)的图象如图所示,则反比例函数y=的图象所在的象限是第_____象限.
13、如图,矩形ABCD中,BC=4,且AB=,连接对角线AC,点E为AC中点,点F为线段AB上的动点,连接EF,作点C关于EF的对称点C',连接C'E,C'F,若△EFC'与△ACF的重叠部分(△EFG)面积等于△ACF的
,则BF=________.
14、已知关于的方程
的一个解为
,则它的另一个解是__________.
15、从1、2、3中任取一个数作为十位上的数字,再从余下的数字中任取一个数作为个位上的数字,那么组成的两位数是4的倍数的概率是_____
16、如图,在中,点
是
边上一点,连接
,把
沿着
翻折,得到
,
与
交于点
.若
,
,
,则点
到
的距离为______.
17、吉林省广播电视塔(简称“古塔”)是我省目前最高的人工建筑,某科技兴趣小组利用无人机搭载测量仪器测量“古塔”的高度,如图,将无人机置于距离“古塔”水平距离138米的点C处,从无人机上观测塔尖的仰角是30度,估测塔基座中心B的俯角为15度,求“古塔”的高度(结果保留整数,参考数据:)
18、对于钝角α,定义它的三角函数值如下:
sinα=sin(180°﹣α),cosα=﹣cos(180°﹣α)
(1)求sin120°,cos120°,sin150°的值;
(2)若一个三角形的三个内角的比是1:1:4,A,B是这个三角形的两个顶点,sinA,cosB是方程4x2﹣mx﹣1=0的两个不相等的实数根,求m的值及∠A和∠B的大小.
19、如图,在中,
,
,
,求
的长.
20、如图,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=5,AC=,
(1)求CD的长
(2)求∠B的度数.
21、 解不等式组,并将解集在数轴上表示出来.
22、已知4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;
23、如图,某仓储中心有一斜坡AB,其坡比为i=1∶2,顶部A处的高AC为4 m,B,C在同一水平面上.
(1)求斜坡AB的水平宽度BC;
(2)矩形DEFG为长方形货柜的侧面图,其中DE=2.5 m,EF=2 m.将货柜沿斜坡向上运送,当BF=3.5 m时,求点D离地面的高.(≈2.236,结果精确到0.1 m)
24、先化简,再求值:,其中
.