1、下列运算,正确的是( )
A. B.
C.
D.
2、已知:如图,,
,下列比例式正确的个数是( )
①;②
;③
.
A.3个
B.2个
C.1个
D.0个
3、如图,在直角△ABC中,∠C=90°,AC=BC=2,P为AC的中点,Q为AB上的一个动点,连接PQ,CQ,则PQ+CQ的最小值为( )
A.2 B.3 C. D.
4、2022年3月25日,我国核电企业研发设计的具有完全自主知识产权的“华龙一号”示范工程全面建成投运,每年减少二氧化碳排放约1632万吨.用科学记数法表示1632万是( )
A.1.632×103
B.1.632×107
C.1.632×104
D.1.632×108
5、某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是( )
①学校到景点的路程为40km;
②小轿车的速度是1km/min;
③a=15;
④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.
A.1个 B.2个 C.3个 D.4个
6、方程根的情况( )
A.有两个不相等的实数根
B.有一个实数根;
C.无实数根
D.有两个相等的实数根
7、下列一元二次方程中,有两个相等实数根的是( )
A.x2﹣8=0
B.2x2﹣4x+3=0
C.9x2﹣6x+1=0
D.5x+2=3x2
8、如图,四边形ABCD是平行四边形,⊙O经过点A、C、D,与BC交于点E,连接AE,若∠D=70°,则∠BAE=( )
A.70° B.50° C.40° D.30°
9、已知反比例函数,当x>0时,y随x的增大而增大,则关于x的方程
的根的情况是( )
A.有两个正根
B.有两个负根
C.有一个正根一个负根
D.没有实数根
10、如图,在△中,
∥
,如果
,
,
,那么
的值为( )
A. B.
C.
D.
11、反比例函数的图象经过点
,则
的值为______.
12、如图,将△ABC沿着过BC的中点D的直线折叠,使点B落在AC边上的处,称为第一次操作,折痕DE到AC的距离为
;还原纸片后,再将△BDE沿着过BD的中点
的直线折叠,使点B落在DE边上的
处,称为第二次操作,折痕
到AC的距离记为
;按上述方法不断操作下去…经过第n次操作后得到折痕
到AC的距离记为
,若
,则
的值为______.
13、一个边长为3厘米的正方形,若它的边长增加x厘米,面积随之增加y平方厘米,则y关于x的函数表达式是____.
14、方程组的解是________.
15、因式分解: .
16、如图,在中,
,
,
.将
绕点
按逆时针方向旋转后得
,直线DA、BE相交于点F.取BC的中点G,连接GF,则GF长的最大值为____________cm.
17、如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.
(1)求证:CD是⊙O的切线;
(2)若∠CDB=60°,AB=18,求的长.
18、如图,已知△ABC,∠BAC=90°
(1)尺规作图:过点A作一条直线交BC于D,使其将∠ABC分成两个相似三角形(保留作图痕迹,不写作法);
(2)若AD=4,tan∠BAD=,求CD的长
19、计算:(﹣2x2)2+x3•x﹣x5÷x
20、某学校从九年级同学中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试.根据测试成绩绘制出下面的统计表和下图的统计图(成绩均为整数,满分为10分).
已知甲组的平均成绩为8.7分.
甲组成绩统计表
成绩 | 7 | 8 | 9 | 10 |
人数 | 1 | 9 | 5 | 5 |
请根据上面的信息,解答下列问题:
(1)__________,甲组成绩的中位数是__________,乙组成绩的众数是__________;
(2)参考下面甲组成绩方差的计算过程,求出乙组成绩的方差,并判断哪个小组的成绩更加稳定?
(3)在甲组的5名满分同学中,有3名男生和2名女生,现从这5人中任选两人进行复测,请用列表或画树状图的方法求选中的这两人都是男生的概率.
21、如图1,长度为6千米的国道两侧有
,
两个城镇,从城镇到公路分别有乡镇公路连接,连接点为
和
,其中
、
之间的距离为2千米,
、
之间的距离为1千米,
、
之间的乡镇公路长度为2.3千米,
、
之间的乡镇公路长度为3.2千米,为了发展乡镇经济,方便两个城镇的物资输送,现需要在国道
上修建一个物流基地
,设
、
之间的距离为
千米,物流基地
沿公路到
、
两个城镇的距离之和为
干米,以下是对函数
随自变量
的变化规律进行的探究,请补充完整.
(1)通过取点、画图、测量,得到与
的几组值,如下表:
| 0 | 1.0 | 2.0 | 3.0 | 4.0 | 5.0 | 6.0 |
| 10.5 | 8.5 |
| 6.5 |
| 10.5 | 12.5 |
(2)如图2,建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:
①若要使物流基地沿公路到
、
两个城镇的距离之和最小,则物流基地
应该修建在何处?(写出所有满足条件的位置)
答:__________.
②如右图,有四个城镇、
、
、
分别位于国道
两侧,从城镇到公路分别有乡镇公路连接,若要在国道上修建一个物流基地
,使得
沿公路到
、
、
、
的距离之和最小,则物流基地
应该修建在何处?(写出所有满足条件的位置)
答:__________.
22、马上开学,益文超市王老板购进了一批笔和作业本,已知每本作业本的进价比每个笔的进价少10元,且用480元购进作业本的数目是用同样金额购进笔的支数的6倍.
(1)求每支笔和每个作业本的进价分别是多少元?
(2)由于销售火爆,第一批销售完了以后,该商店用相同的价格再购进300支作业本和200本笔,已知作业本
售价为6元一本,笔售价为24元一支,销售一段时间后,作业本卖出了总数的,笔售出了总数的
,为了清仓,该店老板对剩下的笔和作业本以相同的折扣数进行打折销售,并很快全部售出.求商店最低打几折可以使得第二次购进的这批作业本和笔的总利润率不低于90%?
23、如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.
(1)求证:△ACD∽△BFD;
(2)当tan∠ABD=1.2,AC=3时,求BF的长.
24、如图①,②,在平面直角坐标系xOy中,点A的坐标为(4,0),以点A为圆心,4为半径的圆与x轴交于O,B两点,OC为弦,∠AOC=60°,P是x轴上的一动点,连结CP.
(1)求∠OAC的度数;
(2)如图①,当CP与⊙A相切时,求PO的长;
(3)如图②,当点P在直径OB上时,CP的延长线与⊙A相交于点Q,问PO为何值时,△OCQ是等腰三角形?