1、如图所示的“六芒星”图标是由圆的六等分点连接而成,若圆的半径为2,则图中阴影部分的面积为( )
A.
B.
C.6
D.
2、把图①的纸片折成一个三棱柱,放在桌面上如图②所示,则从左侧看到的面为( )
A.Q
B.R
C.S
D.T
3、如果⊙O的半径为6 cm,OP=7cm,那么点P与⊙O的位置关系是( )
A.点P在⊙O内
B.点P在⊙O上
C.点P在⊙O外
D.不能确定
4、如图,△ABC中,∠ABC=45°,BC=8,tan∠ACB=3,AD⊥BC于D,若将△ADC绕点D逆时针方向旋转得到△FDE,当点E恰好落在AC上,连接AF.则AF的长为( )
A.
B.
C.
D.4
5、如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0在1<x<5的范围内有解,则t的取值范围是( )
A. t>-5 B. -5<t<3 C. -5<t≤4 D. 3<t≤4
6、如图,⊙O的直径垂直弦
于点E,且
,
,则
的长为( )
A.4
B.6
C.7
D.8
7、在代数式 中,m的取值范围是( )
A.m≤3
B.m≠0
C.m≥3
D.m≤3且m≠0
8、设“■●▲”表示三种不同的物体,现用天平称了两次,情况如图,那么“■●▲”中质量最大的是( )
A.▲
B.■
C.●
D.无法判断
9、如图所示,在平行四边形ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=( )
A.2:5 B.2:3 C. 3:5 D. 3:2
10、下列说法中不正确的是( )
A.抛掷一枚硬币,硬币落地时正面朝上是随机事件
B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件
C.一个盒子中有白球m个,红球6个,黑球n个,每个球除了颜色外都相同.如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6
D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖
11、如图,在矩形ABCD中,,
,以点A为圆心,AD长为半径画弧交BC于点E,连接AE,则阴影部分的面积为_______.
12、计算:﹣20﹣19=_____.
13、一组数据2,4,2,3,4的方差s2=_____.
14、一个扇形的弧长是4 ,半径是6,则这个扇形的圆心角度数是______.
15、下列投影:①阳光下遮阳伞的影子;②灯光下小明读书的影子;③阳光下大树的影子;④阳光下农民锄地的影子;⑤路灯下木杆的影子.其中属于平行投影的是_______,属于中心投影的是_____.(填序号)
16、设m,n分别为一元二次方程x2+2x﹣1=0的两个实数根,则m+n+mn=_____.
17、根据下列要求,解答相关问题.
(1)请补全以下求不等式的解集的过程:
① 构造函数,画出图象:根据不等式特征构造二次函数y=;并在下面的坐标系中(图1)画出二次函数y=
的图象(只画出大致图象即可);
② 求得界点,标示所需:当时,求得方程
的解为 ;并用虚线标示出函数y=
图象中
<0的部分;
③借助图象,写出解集:由所标示图象,可得不等式<0的解集为 .
(2)请你利用上面求不等式解集的过程,求不等式-3≥0的解集.
18、抛物线C1:y=ax2﹣x+2(a>0)与x轴交于A、B(点A在点B左侧),与y轴交于点C.
(1)如图1,若A(2,0),连AC、BC.
①直接写出C1的解析式及△ABC的面积;
②将△AOC绕某一点逆时针旋转90°至△A′O′C′(其中A、O、C的对应点分别为A′、O′、C′).若旋转后的△A′O′C′恰有一边的两个端点落在抛物线C1的图象上,求点A′的坐标;
(2)如图2,平移抛物线C1使平移后的新抛物线C2顶点在原点,P(,0)是x轴正半轴上一点,过P作直线交C2的图象于A、B,过A的直线y=x+b交C2于点C,过P作x轴的垂线交BC于点M,设点M的纵坐标为n,试判断an是否为定值?若是,求这个定值,若不是,说明理由.
19、水果店购进某种水果的成本为10元/千克,经市场调研,获得销售单价p(元/千克)与销售时间t(1≤t≤15,t为整数)(天)之间的部分数据如下表:
销售时间t(1≤t≤15,t为整数)(天) | 1 | 4 | 5 | 8 | 12 |
销售单价p(元/千克) | 20.25 | 21 | 21.25 | 22 | 23 |
已知p与t之间的变化规律符合一次函数关系.
(1)试求p关于t的函数表达式;
(2)若该水果的日销量y(千克)与销售时间t(天)的关系满足一次函数y=-2t+120(1≤t≤15,t为整数).
① 求销售过程中最大日销售利润为多少?
② 在实际销售的前12天中,公司决定每销售1千克水果就捐赠n元利润(n<3)给“精准扶贫”对象.现发现:在前12天中,每天扣除捐赠后的日销售利润随时间t的增大而增大,求n的取值范围
20、如图,直线与直线
相交于点
.
(1)直接写出的解集;
(2)将与
组成方程组,不解方程组,请直接写出它的解.
(3)直线是否也经过点
?请说明理由.
21、如图,的半径为4,点
在
上.
(1)尺规作图:过点作
的切线
;
(2)在(1)的条件下,点是
上的一个动点(不与点
重合),过点
作
于点
,连接
.设
,
,求
的最大值.
22、已知,求
的值.
23、【问题提出】用n个圆最多能把平面分成几个区域?
【问题探究】为了解决上面的数学问题,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.
探究一:如图1,一个圆能把平面分成2个区域.
探究二:用2个圆最多能把平面分成几个区域?
如图2,在探究一的基础上,为了使分成的区域最多,应使新增加的圆与前1个圆有2个交点,将新增加的圆分成2部分,从而增加2个区域,所以,用2个圆最多能把平面分成4个区域.
探究三:用3个圆最多能把平面分成几个区域?
如图3,在探究二的基础上,为了使分成的区域最多,应使新增加的圆与前2个圆分别有2个交点,将新增加的圆分成部分,从而增加4个区域,所以,用3个圆最多能把平面分成8个区域.
(1)用4个圆最多能把平面分成几个区域?
仿照前面的探究方法,写出解答过程,不需画图.
(2)【一般结论】用n个圆最多能把平面分成几个区域?
为了使分成的区域最多,应使新增加的圆与前个圆分别有2个交点,将新增加的圆分成______________部分,从而增加___________________个区域,所以,用n个圆最多能把平面分成__________________个区域.(将结果进行化简)
(3)【结论应用】
①用10个圆最多能把平面分成_________个区域;
②用___________个圆最多能把平面分成422个区域.
24、为了促进各科均衡发展,学校准备在九年级下期开设四科补短班,分别是英语、数学、物理和化学.为提前了解同学们最想参加的科目,学校在开学前采用随机抽样方式进行了调查,并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息完成以下问题.
(1)扇形统计图中,“英语”所在扇形的圆心角度数是 ,并补全条形统计图;
(2)在被调查的学生中,选择化学的有2名女同学,其余为男同学,现要从中随机抽取2名同学参加学科座谈会,请用画树状图或列表的方法求出所抽取的2名同学恰好是1名男同学和1名女同学的概率.