1、下列运算中正确的是( )
A. B.
C.
D.
2、如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上, 顶点C、D在圆内,将正方形ABCD沿圆的内壁作无滑动的滚动.当滚动一周回到原位置时,点C运动的路径长为 ( )
A. 2 B. (
+1) C. (
+2) D. (
+1)
3、如图,阴影部分是从一块直径为的圆形铁板中截出的一个工件示意图,其中
是等边三角形,则阴影部分的面积为( )
A. B.
C. D.
4、下列等式从左到右的变形,属于因式分解的是( )
A.8x2 y3=2x2⋅4 y3
B.( x+1)( x﹣1)=x2﹣1
C.3x﹣3y﹣1=3( x﹣y)﹣1
D.x2﹣8x+16=( x﹣4)2
5、如图,在边长为2cm的等边△ABC中,AD⊥BC于D,点M、N同时从A点出发,分别沿A﹣B﹣D、A﹣D运动,速度都是1cm/s,直到两点都到达点D即停止运动.设点M、N运动的时间为x(s),△AMN的面积为y(cm2),则y与x的函数图象大致是( )
A. B.
C. D.
6、甲乙两名同学进行了10次投掷铅球的测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的( )
A.众数
B.中位数
C.方差
D.平均数
7、方程的解为( )
A. B.
C.
D.
8、2018年从国家旅游局发布的接待游客量数据显示,在清明小长假期间,四川游客量依旧是第一,达到2249.8万人次,数据2249.8万用科学记数法表示为( )
A. B.
C. D.
9、为了美化环境,某市加大对道路绿化的投资,2013年用于道路绿化投资100万元,2015年用于道路绿化投资144万元,求这两年道路绿化投资的年平均增长率。设这两年道路绿化投资的年平均增长率为x,根据题意所列方程为( )
A. B.
C. D.
10、下列计算正确的是( )
A.5a2﹣3a2=2 B.(﹣2a2)3=﹣6a6
C.a3÷a=a2 D.(a+b)2=a2+b2
11、如图,在菱形ABCD中,点E在CD上,若AE=AC,∠B=48°,则∠BAE的大小为_____.
12、定义:有一组邻边相等的凸四边形叫做等邻边四边形.如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=1,将△ABC沿∠ABC的平分线BB'的方向平移,得到A'B'C',连接AC',CC',若四边形ABCC'是等邻边四边形,则平移距离BB'的长度是_____.
13、2021年新冠疫情得到控制,人们外出逛街购物激情高涨,仅在5月1日,万州区万达广场的营业额将近4320000余元,将数据4320000用科学记数法表示为_______.
14、因式分解4x2+12xy+9y2=_____.
15、如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B'位置,A点落在A'位置,若AC⊥A'B',则∠BAC的度数是__.
16、分解因式:__________.
17、已知,求代数式
的值.
18、解方程:.
19、如图1,△ABC中,AC=,∠ACB=45°,tanB=3,过点A作BC的平行线,与过C且垂直于BC的直线交于点D,一个动点P从B出发,以每秒1个单位长度的速度沿BC方向运动,过点P作PE⊥BC,交折线BA-AD于点E,以PE为斜边向右作等腰直角三角形PEF,设点P的运动时间为t秒(t>0).
(1)当点F恰好落在CD上时,此时t的值为 ;
(2)若P与C重合时运动结束,在整个运动过程中,设等腰直角三角形PEF与四边形ABCD重叠部分的面积为S,请求出S与t之间的函数关系式,并写出自变量t的取值范围;
(3)如图2,在点P开始运动时,BC上另一点Q同时从点C出发,以每秒2个单位长度沿CB方向运动,当Q到达B点时停止运动,同时点P也停止运动,过Q作QM⊥BC交射线CA于点M,以QM为斜边向左作等腰直角三角形QMN,若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一直线上,请直接写出t的值.
20、化简求值:,其中
.
21、如图,等边三角形中,D是
上一点,连接
并将
绕点A逆时针旋转120°得到线段
,连接
交
于点F.
(1)当点D为中点,且
时,
___________;
(2)补全图形,探究线段与
之间的数量关系,并证明你的结论.
22、在ABC中,CA=CB,∠ACB=90°.点P是平面内不与点A、C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转90°得到线段DP,连接AD,BD,CP.
(1)如图1,求的值及直线BD与直线CP相交所成的较小角的度数;
(2)如图2,若点E、F分别是CA、CB的中点,点P在直线EF上,当点C,P,D在同一直线上时,求的值.
23、一个不透明的口袋里装有分别标有汉字“美”、“丽”、“泰”、“兴”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;
(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“泰兴”的概率.
24、如图,P是弧AB所对弦AB上一动点,过点P作PM⊥AB交AB于点M,连接MB,过点P作PN⊥MB于点N.已知AB =6cm,设A 、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)
小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.
下面是小东的探究过程,请补充完整:
(1)通过取点、画图、测量,得到了x与y的几组值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y/cm | 0 | 2.0 | 2.3 | 2.1 |
| 0.9 | 0 |
(说明:补全表格时相关数值保留一位小数)
(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
(3)结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为____________cm.